Exploring the Complete Genomics Diversity panel

VJ Carey

October 2, 2012

Contents

1	Introduction	2
2	Contents of a VCF header	3
3	Variant calls for chromosome 17	5
	3.1 Recording structural variation for an individual	
	3.2 Isolating variants in the vicinity of a gene, for an individual	7
4	Filtering and analyzing variants on multiple individuals	8
	4.1 Sample filtering	9
	4.2 Counting variants in a specified region, with quality filtering	9
	4.3 Enumerating variants by structural context	12

1 Introduction

Complete Genomics Inc. distributes a collection of data on deeply sequenced genomes (from Coriell cell lines) from 11 different human populations.

```
> library(cgdv17)
> data(popvec)
> popvec[1:5]
NA19700 NA19020 NA19701 NA19025 NA19703
  "ASW"
          "LWK"
                   "ASW"
                           "LWK"
                                    "ASW"
> table(popvec)
popvec
ASW CEU CHB GIH JPT LWK MKK MXL TSI YRI
  5
      5
          4
                   4
                       4
                           4
                                5
                                    4
                                        7
```

The data are distributed with many details; VJC obtained the masterVar TSV files from the Complete Genomics ftp2 site, converted these to VCF 4.0 in Oct. 2011, using a tool noted at

http://community.completegenomics.com/tools/m/cgtools/219.aspx

The conversion tool used was released with various caveats. Perhaps the whole conversion should be redone with official tools.

The purpose of this note is to explore some basic structural features of the data, so that relevant genetic structures can be identified for analytic programming and interpretation. We focus on variant calls on chromosome 17.

Formal restrictions on publications related to these data are as follows.

- 1. The Coriell and ATCC Repository number(s) of the cell line(s) or the DNA sample(s) must be cited in publication or presentations that are based on the use of these materials.
- 2. You must reference our Science paper (R. Drmanac, et. al. Science 327(5961), 78. [DOI: 10.1126/science.1181498])
- 3. You must provide the version number of the Complete Genomics assembly software with which the data was generated. This can be found in the header of the summary.tsv file (\# Software_Version).

2 Contents of a VCF header

There is a lot of redundancy among the headers for the 46 files, so one was isolated for distribution.

```
> data(h1)
```

> h1

\$NA21767_17.vcf.gz
SimpleList of length 3

names(3): Reference Sample Header

> h1[[1]]\$Sample

[1] "GS21767-1100-37-ASM"

> h1[[1]]\$Header\$META

DataFrame with 5 rows and 1 column

Value

<character>

fileformat VCFv4.1
fileDate 20111102
source masterVar2VCFv40
reference build37.fa.bz2
phasing partial

> h1[[1]]\$Header\$INFO

DataFrame with 3 rows and 3 columns

	Number	Туре			De	escript	tion
	<character></character>	<character></character>			<(charact	ter>
\mathtt{NS}	1	Integer	Number	of	Samples	With I	Data
DP	1	Integer			To	otal De	epth
DB	0	Flag	dbSNP n	nemb	ership,	build	131

> h1[[1]]\$Header\$FORMAT

DataFrame with 12 rows and 3 columns

	Number	Туре	Description
	<character></character>	<character></character>	<character></character>
GT	1	String	Genotype
GQ	1	Integer	Genotype Quality
DP	1	Integer	Read Depth

HDP	2	Integer	Haplotype Read Depth
HQ	2	Integer	Haplotype Quality
PS	2	Integer	Phase Set
GENE		String	Overlaping Genes
mRNA	•	String	Overlaping mRNA
rmsk		String	Overlaping Repeats
segDup		String	Overlaping segmentation duplication $\\$
rCov	1	Float	relative Coverage
cPd	1	String	<pre>called Ploidy(level)</pre>

3 Variant calls for chromosome 17

3.1 Recording structural variation for an individual

We created a provisional container for the call data on chromosome 17. Tabix facilities were used to filter and index the data from the full VCF to all of chromosome 17.

At present it is not clear how to model a collection of deeply sequenced chromosomes. I have used VariantAnnotation:::readVcf, which must be applied separately for each individual, given the Complete Genomics distribution. The focus is on structural information in the rowData component of the VCF object returned by readVcf, which is a GRanges instance. From the elementMetadata I removed FILTER and added geno()\$GT information. This gives us information to specific variants and phase for some variants, depending on the string content of the GT information.

The getRVS function will collect file references for the serialized GRanges.

```
> rv = getRVS("cgdv17")
> rv

raggedVariantSet instance with 46 elements.
some sampleNames: NAO6985 NAO6994 ... NA21737 NA21767
```

Data on one individual can be extracted using getrd(). We will confine attention to variants with quality score in the top quartile of its distribution for this individual.

```
> R85 = getrd(rv, "NA06985")
> length(R85)
```

[1] 174744

> summary(elementMetadata(R85)\$QUAL)

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 0 0 98 117 166 1714
```

- > kp = which(elementMetadata(R85)\$QUAL >= 166)
- > R85hiq = R85[kp]

A small excerpt gives us a sense of the sorts of variation to be encountered:

> elementMetadata(R85hiq)[11:20,]

DataFrame with 10 rows and 5 columns

```
REF ALT QUAL <DNAStringSet> <CompressedCharacterList> <numeric> rs7209783 T C 309
```

rs7209943	T		C	417
rs7220384	T		C	187
rs7210283	Α		G	187
rs7220537,rs35411518	CTG		CCA, CCG	203
rs8075072	Α		G	380
chr17:20080	C		Т	272
rs2294074	G		Α	324
chr17:23182	TAGT		TGGG	237
chr17:23722	T		G	396
	geno	depth		

	geno	deptii
	<character></character>	<pre><integer></integer></pre>
rs7209783	1 0	66
rs7209943	1/0	63
rs7220384	1/1	61
rs7210283	1/0	48
rs7220537,rs35411518	1/2	46
rs8075072	1/1	26
chr17:20080	1/0	45
rs2294074	1/0	45
chr17:23182	1/0	62
chr17:23722	1 0	50

> refs = elementMetadata(R85hiq)\$REF

> table(nchar(refs))

1	2	3	4	5	6	7	8	9	10	11	12	13
41848	646	645	347	193	63	33	21	25	17	16	18	15
14	15	16	17	18	19	20	21	22	23	24	25	26
9	10	7	5	3	1	2	2	1	2	2	2	1
27	29	30	31	32	34	135						
2	1	2	1	2	1	1						

> alts[grep(",",unlist(alts))]

CompressedCharacterList of length 120

- [[1]] CCA,CCG
- [[2]] CCC,CCG
- [[3]] A,C
- [[4]] ACA,ATG
- [[5]] CTCG, CNCN
- [[6]] GCA,GTG

> alts = elementMetadata(R85hiq)\$ALT

> genos = elementMetadata(R85hiq)\$geno

```
[[7]] CGCA,CGCG
[[8]] C,G
[[9]] TGG,TCA
[[10]] CAAG,CGAG
...
<110 more elements>
```

Summary: references are recorded as DNAStrings, alternatives are compressed character strings with commas, and the phasing of the individual-level calls can be derived by parsing the geno component.

3.2 Isolating variants in the vicinity of a gene, for an individual

We are interested in gene ORMDL3. We will use the hg19 transcriptDb to obtain the locations and tabulate higher quality variants observed 100kb up and downstream of the transcript.

```
> library(TxDb.Hsapiens.UCSC.hg19.knownGene)
> tx19 = TxDb.Hsapiens.UCSC.hg19.knownGene
> library(org.Hs.eg.db)
> get("ORMDL3", revmap(org.Hs.egSYMBOL))
[1] "94103"
> ortx = transcriptsBy(tx19, "gene")$"94103"
> seqlevels(R85hiq) = "chr17"
> aro = subsetByOverlaps(R85hig, ortx+100000)
> table(elementMetadata(aro)$geno)
0/. 0|. 1/0 1/1 1|0 1|2
  2
     1 121 10 65
> alts = unlist(elementMetadata(aro)$ALT)
> alts[nchar(alts)>1]
 [1] "AGTG"
               "CC"
                         "GG"
                                              "AT"
                                                        "AGG"
                                                                  " A A "
                                    "CTGC"
 [8] "ACAC"
               "GG"
                         "ACA, ACG" "GAA"
```

There are deletion and insertion events, but I don't see any simple way of isolating and counting them at the moment. Some code will be added to address this.

We can use VariantAnnotation to obtain structural contexts. It takes over a minute to use locateVariants, so I just show the code and results here for now.

```
mycache = new.env(hash=TRUE)
lvaro = locateVariants(aro, tx19, cache=mycache)
lvaro[1:4,]
table(lvaro$loca, sapply((lvaro$geneID), function(x)strsplit(x, ",")[[1]][1]))
DataFrame with 4 rows and 5 columns
    queryID location
                           txTD
                                                     geneID
                                                                 cdsID
  <integer> <factor> <integer> <CompressedCharacterList> <integer>
               intron
                          60959
                                                      22806
                                                                189661
2
          1
                                                      22806
               intron
                          60960
                                                                189661
3
          1
                          60961
                                                      22806
                                                                189661
               intron
4
                                                      22806
                                                                189661
           1
               intron
                          60962
              124626 1440 22806 284110 2886 55876 5709 94103 9862
  3'UTR
                   0
                               0
                                      0
                                            0
                                                  0
                                                                  20
  5'UTR
                   0
                               0
                                            0
                                                       0
                                                              0
                                                                  10
                        0
                                      1
                   0
                        0
                               0
                                      6
                                            0
                                                  0
                                                       0
                                                              0
                                                                  10
  coding
                                      4
                                            1
                                                  2
                                                      25
                                                                   0
                  34
                        1
                              10
                                                             10
  intergenic
                  28
                             105
                                     42
                                                138
                                                      99
                                                              6
                                                                   0
  intron
```

We see that this search for variants near ORMDL3 identifies variants affecting other nearby genes.

4 Filtering and analyzing variants on multiple individuals

The analysis of a ragged variant set requires infrastructure. We will illustrate with a focused analysis of variants in the vicinity of ORMDL3. We have used the GGdata and hmyriB36 packages to collect expression data on 12 individuals in the diversity cohort, in the CY17 smlSet instance. This includes expression on all genes on chr17, and the HapMap phase 2 genotypes as well.

```
> suppressPackageStartupMessages(library(GGtools))
```

> CY17

SnpMatrix-based genotype set:

number of samples: 12

number of chromosomes present: 3 annotation: illuminaHumanv1.db Expression data dims: 1291 x 12

Total number of SNP: 83889

Phenodata: An object of class 'AnnotatedDataFrame'

> data(CY17)

```
rowNames: NA06985 NA06994 ... NA19129 (12 total) varLabels: mothid fathid isFounder male
```

varMetadata: labelDescription

```
> sn = sampleNames(CY17)
```

4.1 Sample filtering

The ragged variant set can be filtered to these individuals.

```
> rv17 = rv[, sn]
> rv17

raggedVariantSet instance with 12 elements.
some sampleNames: NA06985 NA06994 ... NA18517 NA19129
```

4.2 Counting variants in a specified region, with quality filtering

The variant counting function takes two key parameters in addition to the variant set: a region within which to count, and a lower bound on call quality for retained variants. A third additional parameter tells how to iterate over samples with an lapply-like function.

Since ORMDL3 is on the minus strand, the upstream region is to the right. We will create a region from start site to 50k upstream.

```
> if (length(ortx)>1) ortx = ortx[2]
> ortss = end(ortx)
> ortup50 = GRanges("chr17", IRanges(ortss, width=50000))
> cv50k = countVariants(rv17, ortup50, 160, lapply )
> cv50k
NAO6985 NAO6994 NAO7357 NA10851 NA12004 NA18501 NA18502 NA18504 NA18505 NA18508
                                                      72
     65
              0
                     51
                              10
                                       9
                                              26
                                                               68
                                                                       56
                                                                               56
NA18517 NA19129
     81
             58
```

We see that the second sample seems to have a quality problem. We will now drop it from both the expression and variant structures.

```
> if (length(sampleNames(rv17))==12) rv17 = rv17[,-2]
> if (length(sampleNames(CY17))==12) CY17 = CY17[,-2]
> #redo
> cv50k = countVariants(rv17, ortup50, 160, lapply )
```

We can acquire the full data on variants in the region under the quality constraint using variantGRanges.

```
> vv50k = variantGRanges( rv17, ortup50, 160, lapply )
```

> vv50k[[1]][1:5]

GRanges with 5 ranges and 5 metadata columns:

O	O					
	seqnames		ranges	strand		REF
	<rle></rle>		<pre><iranges></iranges></pre>	<rle></rle>	<dnastri< td=""><td>ngSet></td></dnastri<>	ngSet>
rs12946393	17	[38087429,	38087429]	*		T
rs35557848	17	[38087439,	38087439]	*		C
rs56199421	17	[38090808,	38090808]	*		C
rs7207600	17	[38091660,	38091660]	*	1	G
rs6503525	17	[38095174,	38095174]	*		G
			ALT	QUAL	geno	depth
	<compress< td=""><td>sedCharacte</td><td>rList> <nur< td=""><td>neric> ·</td><td><pre><character></character></pre></td><td><integer></integer></td></nur<></td></compress<>	sedCharacte	rList> <nur< td=""><td>neric> ·</td><td><pre><character></character></pre></td><td><integer></integer></td></nur<>	neric> ·	<pre><character></character></pre>	<integer></integer>
rs12946393			G	339	1/1	70
rs35557848			T	339	1/0	56
rs56199421			T	270	1/0	48
rs7207600			Α	470	1/0	66
rs6503525			С	440	1/0	69
seqlengths	:					
17						
NA						

> sapply(vv50k,length)

```
NAO6985 NAO7357 NA10851 NA12004 NA18501 NA18502 NA18504 NA18505 NA18508 NA18517 65 51 10 9 26 72 68 56 56 81 NA19129 58
```

As a naive hint of a connection of "variant burden" with ORMDL3 expression, consider the following display.

Call:

lm(formula = ORMDL3ex ~ cv50k * factor(ygr))

Residuals:

Min 1Q Median 3Q Max -0.29969 -0.13281 -0.02538 0.12717 0.32077

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.912418 0.355770 25.051 4.12e-08 ***

 cv50k
 -0.010792
 0.005763
 -1.873
 0.103

 factor(ygr)red
 -0.520704
 0.412601
 -1.262
 0.247

 cv50k:factor(ygr)red
 0.008317
 0.007625
 1.091
 0.311

Signif. codes: 0 $a \ddot{A} \ddot{Y} * * * a \ddot{A} \acute{Z}$ 0.001 $a \ddot{A} \ddot{Y} * * a \ddot{A} \acute{Z}$ 0.01 $a \ddot{A} \ddot{Y} * a \ddot{A} \acute{Z}$ 0.05 $a \ddot{A} \ddot{Y} . a \ddot{A} \acute{Z}$ 0.1 $a \ddot{A} \ddot{Y}$ $a \ddot{A} \acute{Z}$ 1

Residual standard error: 0.2472 on 7 degrees of freedom

Multiple R-squared: 0.3528, Adjusted R-squared: 0.07538

F-statistic: 1.272 on 3 and 7 DF, p-value: 0.3557

4.3 Enumerating variants by structural context

Now we focus on variants in the ORMDL3 coding region.

```
> library(parallel)
> options(mc.cores=max(c(2, parallel::detectCores()-2)))
> vv = variantGRanges( rv17, ortx, 160, mclapply )
> vvv = lapply(vv, function(x) renameSeqlevels(x, c("17"="chr17")))
> mycache = new.env(hash=TRUE)
> locs = lapply(vvv, function(x) {
+ locateVariants(x, tx19, CodingVariants(), cache=mycache)
+ })
```

Further work: illustrate the predictCoding behavior, streamline the catalog of variants relevant to a given gene over the 46 individuals. Relate to population membership, and, where available, to expression variation.