
segmentSeq: methods for identifying small RNA loci from

high-throughput sequencing data

Thomas J. Hardcastle

April 24, 2017

1 Introduction

High-throughput sequencing technologies allow the production of large volumes of short sequences, which can be
aligned to the genome to create a set of matches to the genome. By looking for regions of the genome which to
which there are high densities of matches, we can infer a segmentation of the genome into regions of biological
significance. The methods we propose allows the simultaneous segmentation of data from multiple samples, taking
into account replicate data, in order to create a consensus segmentation. This has obvious applications in a number
of classes of sequencing experiments, particularly in the discovery of small RNA loci and novel mRNA transcriptome
discovery.

We approach the problem by considering a large set of potential segments upon the genome and counting the number
of tags that match to that segment in multiple sequencing experiments (that may or may not contain replication).
We then adapt the empirical Bayesian methods implemented in the baySeq package [1] to establish, for a given
segment, the likelihood that the count data in that segment is similar to background levels, or that it is similar to the
regions to the left or right of that segment. We then rank all the potential segments in order of increasing likelihood
of similarity and reject those segments for which there is a high likelihood of similarity with the background or the
regions to the left or right of the segment. This gives us a large list of overlapping segments. We reduce this list
to identify non-overlapping loci by choosing, for a set of overlapping segments, the segment which has the lowest
likelihood of similarity with either background or the regions to the left or right of that segment and rejecting all
other segments that overlap with this segment. For fuller details of the method, see Hardcastle et al. [2].

2 Preparation

We begin by loading the segmentSeq package.

> library(segmentSeq)

Note that because the experiments that segmentSeq is designed to analyse are usually massive, we should use (if
possible) parallel processing as implemented by the parallel package. If using this approach, we need to begin
by define a cluster. The following command will use eight processors on a single machine; see the help page for
’makeCluster’ for more information. If we don’t want to parallelise, we can proceed anyway with a NULL cluster.

> if(require("parallel"))

+ {

+ numCores <- min(8, detectCores())

+ cl <- makeCluster(numCores)

+ } else {

+ cl <- NULL

+ }

The readGeneric function is able to read in tab-delimited files which have appropriate column names, and create
an alignmentData object. Alternatively, if the appropriate column names are not present, we can specify which
columns to use for the data. In either case, to use this function we pass a character vector of files, together with
information on which data are to be treated as replicates to the function. We also need to define the lengths of

1

2

the chromosome and specifiy the chromosome names as a character. The data here, drawn from text files in the
’data’ directory of the segmentSeq package are taken from the first million bases of an alignment to chromosome 1
and the first five hundred thousand bases of an alignment to chromosome 2 of Arabidopsis thaliana in a sequencing
experiment where libraries ‘SL9’ and ‘SL10’ are replicates, as are ‘SL26’ and ‘SL32’. Libraries ‘SL9’ and ‘SL10’ are
sequenced from an Argonaute 6 IP, while ‘SL26’ and ‘SL32’ are an Argonaute 4 IP.

A similar function, readBAM performs the same operation on files in the BAM format. Please consult the help page
for further details.

> datadir <- system.file("extdata", package = "segmentSeq")

> libfiles <- c("SL9.txt", "SL10.txt", "SL26.txt", "SL32.txt")

> libnames <- c("SL9", "SL10", "SL26", "SL32")

> replicates <- c("AGO6", "AGO6", "AGO4", "AGO4")

> aD <- readGeneric(files = libfiles, dir = datadir,

+ replicates = replicates, libnames = libnames,

+ polyLength = 10, header = TRUE, gap = 200)

> aD

An object of class "alignmentData"

3149 rows and 4 columns

Slot "libnames":

[1] "SL9" "SL10" "SL26" "SL32"

Slot "replicates":

[1] AGO6 AGO6 AGO4 AGO4

Levels: AGO4 AGO6

Slot "alignments":

GRanges object with 3149 ranges and 2 metadata columns:

seqnames ranges strand | tag multireads

<Rle> <IRanges> <Rle> | <character> <numeric>

[1] >Chr1 [265, 284] - | AAATGAAGATAAACCATCCA 1

[2] >Chr1 [405, 427] - | AAGGAGTAAGAATGACAATAAAT 1

[3] >Chr1 [406, 420] - | AAGAATGACAATAAA 1

[4] >Chr1 [600, 623] + | AAGGATTGGTGGTTTGAAGACACA 1

[5] >Chr1 [665, 688] + | ATCCTTGTAGCACACATTTTGGCA 1

...

[3145] >Chr1 [991569, 991589] - | CCGATAAACGCATACTTCCCT 1

[3146] >Chr1 [992039, 992054] - | AAGGAAATTAGAAAAT 1

[3147] >Chr1 [995357, 995372] + | AGAGACATGGGCGACA 1

[3148] >Chr1 [995493, 995507] + | AAACTCGTGAAGAAG 1

[3149] >Chr1 [995817, 995840] - | AGAGATCAAGTATATAGAATTAAG 1

seqinfo: 1 sequence from an unspecified genome; no seqlengths

Slot "data":

Matrix with 3149 rows.

SL9 SL10 SL26 SL32

1 1 0 0 0

2 0 0 0 2

3 0 1 0 0

4 0 1 0 0

5 7 1 0 0

...

3145 1 0 0 0

3146 0 1 0 0

3147 0 1 0 0

3148 0 1 0 0

3149 1 0 0 0

3

Slot "libsizes":

[1] 1193 1598 1818 1417

Next, we process this alignmentData object to produce a segData object. This segData object contains a set of
potential segments on the genome defined by the start and end points of regions of overlapping alignments in the
alignmentData object. It then evaluates the number of tags that hit in each of these segments.

> sD <- processAD(aD, cl = cl)

> sD

GRanges object with 1452 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] >Chr1 [265, 284] *

[2] >Chr1 [265, 420] *

[3] >Chr1 [265, 623] *

[4] >Chr1 [265, 688] *

[5] >Chr1 [265, 830] *

...

[1448] >Chr1 [992039, 992054] *

[1449] >Chr1 [995357, 995372] *

[1450] >Chr1 [995357, 995507] *

[1451] >Chr1 [995493, 995507] *

[1452] >Chr1 [995817, 995840] *

seqinfo: 1 sequence from an unspecified genome; no seqlengths

An object of class "lociData"

1452 rows and 4 columns

Slot "replicates"

AGO6 AGO6 AGO4 AGO4

Slot "groups":

list()

Slot "data":

SL9 SL10 SL26 SL32

Slot "annotation":

data frame with 0 columns and 0 rows

Slot "locLikelihoods" (stored on log scale):

Matrix with 0 rows.

<0 x 0 matrix>

We can now construct a segment map from these potential segments.

Segmentation by heuristic methods

A fast method of segmentation can be achieved by exploiting the bimodality of the densities of small RNAs in the
potential segments. In this approach, we assign each potential segment to one of two clusters for each replicate
group, either as a segment or a null based on the density of sequence tags within that segment. We then combine
these clusterings for each replicate group to gain a consensus segmentation map.

> hS <- heuristicSeg(sD = sD, aD = aD, RKPM = 1000, largeness = 1e8, getLikes = TRUE, cl = cl)

......

4

Segmentation by empirical Bayesian methods

A more refined approach to the problem uses an existing segment map (or, if not provided, a segment map defined
by the hS function) to acquire empirical distributions on the density of sequence tags within a segment. We can then
estimate posterior likelihoods for each potential segment as being either a true segment or a null. We then identify
all potential segments in the with a posterior likelihood of being a segment greater than some value ’lociCutoff’
and containing no subregion with a posterior likelihood of being a null greater than ’nullCutoff’. We then greedily
select the longest segments satisfying these criteria that do not overlap with any other such segments in defining our
segmentation map.

> cS <- classifySeg(sD = sD, aD = aD, cD = hS, cl = cl)

...........

> cS

GRanges object with 64 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] >Chr1 [1, 264] *

[2] >Chr1 [265, 967] *

[3] >Chr1 [968, 17054] *

[4] >Chr1 [17055, 18728] *

[5] >Chr1 [18729, 27656] *

...

[60] >Chr1 [889498, 889525] *

[61] >Chr1 [889526, 944194] *

[62] >Chr1 [944195, 944222] *

[63] >Chr1 [944223, 958610] *

[64] >Chr1 [958611, 959152] *

seqinfo: 1 sequence from an unspecified genome; no seqlengths

An object of class "lociData"

64 rows and 4 columns

Slot "replicates"

AGO6 AGO6 AGO4 AGO4

Slot "groups":

list()

Slot "data":

AGO6.1 AGO6.2 AGO4.1 AGO4.2

[1,] 0 0 0 0

[2,] 55 47 65 85

[3,] 2 3 0 0

[4,] 682 621 1405 1103

[5,] 0 3 0 0

59 more rows...

Slot "annotation":

data frame with 0 columns and 64 rows

Slot "locLikelihoods" (stored on log scale):

Matrix with 64 rows.

AGO4 AGO6

1 0.040948 0.038297

2 0.90347 0.96323

3 0.016844 0.031157

4 0.98952 0.99691

5 0.018425 0.047827

5

...

60 0.08755 0.95692

61 0.11928 0.061966

62 0.98248 0.89929

63 0.16222 0.027597

64 0.29943 0.96233

Expected number of loci in each replicate group

AGO4 AGO6

28.59675 31.16924

By one of these methods, we finally acquire an annotated lociData object, with the annotations describing the
co-ordinates of each segment.

We can use this lociData object, in combination with the alignmentData object, to plot the segmented genome.

> par(mfrow = c(2,1), mar = c(2,6,2,2))

> plotGenome(aD, hS, chr = ">Chr1", limits = c(1, 1e5),

+ showNumber = FALSE, cap = 50)

> plotGenome(aD, cS, chr = ">Chr1", limits = c(1, 1e5),

+ showNumber = FALSE, cap = 50)

1 20001 40001 60001 80001 100001

SL9

SL10

SL26

SL32

1 20001 40001 60001 80001 100001

SL9

SL10

SL26

SL32

Figure 1: The segmented genome (first 105 bases of chromosome 1.

Given the calculated likelihoods, we can filter the segmented genome by controlling on likelihood, false discovery rate,
or familywise error rate

6

> loci <- selectLoci(cS, FDR = 0.05)

> loci

GRanges object with 30 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] >Chr1 [265, 967] *

[2] >Chr1 [17055, 18728] *

[3] >Chr1 [42217, 42570] *

[4] >Chr1 [44710, 44870] *

[5] >Chr1 [76799, 77519] *

...

[26] >Chr1 [758302, 760446] *

[27] >Chr1 [789508, 789548] *

[28] >Chr1 [889498, 889525] *

[29] >Chr1 [944195, 944222] *

[30] >Chr1 [958611, 959152] *

seqinfo: 1 sequence from an unspecified genome; no seqlengths

An object of class "lociData"

30 rows and 4 columns

Slot "replicates"

AGO6 AGO6 AGO4 AGO4

Slot "groups":

list()

Slot "data":

AGO6.1 AGO6.2 AGO4.1 AGO4.2

[1,] 55 47 65 85

[2,] 682 621 1405 1103

[3,] 31 11 48 68

[4,] 73 58 47 21

[5,] 182 168 275 131

25 more rows...

Slot "annotation":

data frame with 0 columns and 30 rows

Slot "locLikelihoods" (stored on log scale):

Matrix with 30 rows.

AGO4 AGO6

1 0.90347 0.96323

2 0.98952 0.99691

3 0.94658 0.93199

4 0.9552 0.99631

5 0.95362 0.95036

...

26 0.96388 0.94654

27 0.81632 0.98334

28 0.08755 0.95692

29 0.98248 0.89929

30 0.29943 0.96233

Expected number of loci in each replicate group

AGO4 AGO6

24.96588 29.01355

The lociData objects can now be examined for differential expression with the baySeq package.

7

First we define the possible models of differential expression on the data. In this case, the models are of non-differential
expression and pairwise differential expression.

> groups(cS) <- list(NDE = c(1,1,1,1), DE = c("AGO6", "AGO6", "AGO4", "AGO4"))

Then we get empirical distributions on the parameter space of the data.

> cS <- getPriors(cS, cl = cl)

Then we get the posterior likelihoods of the data conforming to each model. Since the ‘cS’ object contains null regions
as well as true loci, we will use the ‘nullData = TRUE’ option to distinguish between non-differentially expressed
loci and non-expressed regions. By default, the loci likelihoods calculated earlier will be used to weight the initial
parameter fit in order to detect null data.

> cS <- getLikelihoods(cS, nullData = TRUE, cl = cl)

.

We can examine the highest likelihood non-expressed (‘null’) regions

> topCounts(cS, NULL, number = 3)

seqnames start end width strand AGO6.1 AGO6.2 AGO4.1 AGO4.2 Likelihood FDR.

1 >Chr1 372735 423138 50404 * 0 0 0 0 0.9723825 0.02761747

2 >Chr1 552693 587497 34805 * 0 0 0 0 0.9721573 0.02773009

3 >Chr1 641225 670379 29155 * 0 0 0 0 0.9720306 0.02780984

FWER.

1 0.02761747

2 0.05469123

3 0.08113090

The highest likelihood expressed but non-differentially expressed regions

> topCounts(cS, "NDE", number = 3)

seqnames start end width strand AGO6.1 AGO6.2 AGO4.1 AGO4.2 Likelihood FDR.NDE

1 >Chr1 76799 77519 721 * 182 168 275 131 0.9187587 0.08124134

2 >Chr1 423139 423547 409 * 19 20 28 12 0.8645442 0.10834857

3 >Chr1 265 967 703 * 55 47 65 85 0.8324692 0.12807599

FWER.NDE

1 0.08124134

2 0.20569254

3 0.33876351

And the highest likelihood differentially expressed regions

> topCounts(cS, "DE", number = 3)

seqnames start end width strand AGO6.1 AGO6.2 AGO4.1 AGO4.2 Likelihood ordering

1 >Chr1 634297 634350 54 * 65 90 12 17 0.9983699 AGO6>AGO4

2 >Chr1 238359 238417 59 * 9 9 0 0 0.9891103 AGO6>AGO4

3 >Chr1 587498 588015 518 * 132 333 897 764 0.9883517 AGO4>AGO6

FDR.DE FWER.DE

1 0.001630082 0.001630082

2 0.006259895 0.012502038

3 0.008056040 0.024004742

Finally, to be a good citizen, we stop the cluster we started earlier:

> if(!is.null(cl))

+ stopCluster(cl)

Session Info

> sessionInfo()

8

R version 3.4.0 (2017-04-21)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 16.04.2 LTS

Matrix products: default

BLAS: /home/biocbuild/bbs-3.5-bioc/R/lib/libRblas.so

LAPACK: /home/biocbuild/bbs-3.5-bioc/R/lib/libRlapack.so

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8

[4] LC_COLLATE=C LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] parallel stats4 stats graphics grDevices utils datasets methods

[9] base

other attached packages:

[1] segmentSeq_2.10.0 ShortRead_1.34.0 GenomicAlignments_1.12.0

[4] SummarizedExperiment_1.6.0 DelayedArray_0.2.0 matrixStats_0.52.2

[7] Biobase_2.36.0 Rsamtools_1.28.0 Biostrings_2.44.0

[10] XVector_0.16.0 BiocParallel_1.10.0 baySeq_2.10.0

[13] abind_1.4-5 GenomicRanges_1.28.0 GenomeInfoDb_1.12.0

[16] IRanges_2.10.0 S4Vectors_0.14.0 BiocGenerics_0.22.0

loaded via a namespace (and not attached):

[1] Rcpp_0.12.10 RColorBrewer_1.1-2 compiler_3.4.0

[4] bitops_1.0-6 tools_3.4.0 zlibbioc_1.22.0

[7] digest_0.6.12 evaluate_0.10 lattice_0.20-35

[10] Matrix_1.2-9 yaml_2.1.14 GenomeInfoDbData_0.99.0

[13] stringr_1.2.0 hwriter_1.3.2 knitr_1.15.1

[16] locfit_1.5-9.1 rprojroot_1.2 grid_3.4.0

[19] rmarkdown_1.4 limma_3.32.0 latticeExtra_0.6-28

[22] edgeR_3.18.0 magrittr_1.5 backports_1.0.5

[25] htmltools_0.3.5 BiocStyle_2.4.0 stringi_1.1.5

[28] RCurl_1.95-4.8

References

[1] Thomas J. Hardcastle and Krystyna A. Kelly. baySeq: Empirical Bayesian Methods For Identifying Differential
Expression In Sequence Count Data. BMC Bioinformatics (2010).

[2] Thomas J. Hardcastle and Krystyna A. Kelly and David C. Baulcombe. Identifying small RNA loci from high-
throughput sequencing data. Bioinformatics (2012).

	1 Introduction
	2 Preparation

