CrispRVariants User Guide

Helen Lindsay, Mark Robinson
4 October 2017

Package version: CrispRVariants 1.4.1

Contents
1 Introduction 2
2 Quickstart 2
3 Case study: Analysis of ptena mutant spectrum in zebrafish 3
3.1 Convert ABl-format Sanger sequences to FASTQ 3
3.2 Mapthe FASTQ reads e 4
3.3 Listthe BAM files 5
3.4 Create the target location and reference sequence L 5
35 Creating a CrisprSet 7
3.6 Creating summary plots of variants L 7
3.7 Calculating the mutation efficiency 8
3.8 Getconsensus alleles 10
3.9 Plot chimeric alignments 10
4 Choosing the strand for display 11
5 Multiple guides 13
6 Changing the appearance of plots 14
6.1 Filtering data in plotVariants 14
6.2 plotAlignments. L 19
6.3 plotFreqHeatmap L L 27
6.4 DbarplotAlleleFreqs 31
7 Using CrispRVariants plotting functions independently 35
7.1 Plot the reference sequence L L 35
8 Note about handling of large deletions 36
Contents

CrispRVariants User Guide 2

1 Introduction

The CRISPR-Cas9 system is an efficient method of introducing mutations into genomic DNA. A guide RNA directs
nuclease activity to an approximately 20 nucleotide target region, resulting in efficient mutagenesis. Repair of the cleaved
DNA can introduce insertions and deletions centred around the cleavage site. Once the target sequence is mutated, the
guide RNA will no longer bind and the DNA will not be cleaved again. SNPs within the target region, depending on their
location, may also disrupt cleavage. The efficiency of a CRISPR-Cas9 experiment is typically measured by amplifying and
sequencing the region surrounding the target sequence, then counting the number of sequenced reads that have insertions
and deletions at the target site. The CrispRVariants package formalizes this process and takes care of various details of
managing and manipulating data for such confirmatory and exploratory experiments.

This guide shows an example illustrating how raw data is preprocessed and mapped and how mutation information is
extracted relative to the reference sequence. The package comprehensively summarizes and plots the spectrum of variants
introduced by CRISPR-Cas9 or similar genome editing experiments.

2 Quickstart

This section is intended for people familiar with mapping reads and working with core Bioconductor classes. See the case
study in the next section for a complete step-by-step analysis.

The CrisprSet class stores aligned reads which have been trimmed to a target region along with annotations of where
insertion and deletions are located with respect to a specified location. CrisprSet objects are created using the functions
readsToTarget (for a single target region) and readsToTargets (for multiple target locations). The following objects
are needed to create a CrisprSet for a single guide sequence. For multiple guides, the equivalent parameters to target
and reference are named targets and references respectively.

= reads - may be a vector of bam filenames, a GAlignments object or a GAlignmentsList object. Bam files are
assumed to represent individual experimental samples (possibly containing reads from more than one guide). If the
bam files contain multiplexed reads that should be separated into groups, first read the alignments into R, separate
as required and then provide the separated alignments to readsToTarget. (See package GenomicAlignments for
more details about GAlignments and GAlignmentsList objects).

= target - A GRanges object indicating the genomic range to analyse. The sequence name and coordinates should
match regions found in the bam file(s). For readsToTarget, the target must contain a single range. The target
range can be found by searching BLAST or BLAT for the guide sequence and extending the found range if desired -
be careful that the genome used by BLAST matches the genome used for mapping! Alternatively, the target region
can be found by mapping the guide sequence to the genome or amplicon reference with a short read aligner (we
typically use bwa fastmap); or if reference sequence is not too large by reading the reference sequence into R and
using gregexpr to search the reference for the guide sequence. (See package GenomicRanges for more details
about GRanges objects).

= reference - A DNAString object, containing the reference sequence at the target location. This can be fetched
from the genome using the command line tool samtools faidx or from within R using the Bioconductor package
RSamtools; fetched from a BSgenome object using Biostrings: :getSeq; or reconstructed from a bam file using
the CrispRVariants function refFromAlns providing the bam file has an MD tag. (See package Biostrings for more
details about DNAString objects).

= target.loc This is the base that should be considered base zero, with respect to the target. For example, if using a
23 nucleotide guide + PAM sequence as the reference, the target.loc would be 17, meaning that bases 17 and 18
are numbered -1 and 1 respectively. If considering the 23bp guide region plus 10 bases on both sides, the target.loc
would be 27.

Other important readsToTarget parameters:

= If the bam file contains paired end data, set collapse.pairs = TRUE so that each read pair is only counted once.

https://bioconductor.org/packages/release/bioc/html/GenomicAlignments.html
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://genome.ucsc.edu/FAQ/FAQblat.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html

CrispRVariants User Guide 3

By default CrispRVariants is conservative when dealing with large gaps, and requires one mapped endpoint to
be within 5 bases of the target.loc. To change this, increase the value of the parameter chimera.to.target, e.g.
chimera.to.target = 200

If the parameter names is set, the sample names will be used when plotting.

If using readsToTargets, providing primer.ranges (amplicon ranges) as well as targets will help CrispRVariants
disambiguate reads from nearby guide sequences.

By default, CrispRVariants displays the variant alleles with respect to the strand of the target. To change this
behaviour, set orientation = "positive" to always display with respect to the plus strand or orientation =
"opposite" to display the opposite strand to the target.

Long gaps are typically mapped in separate segments. These are called chimeric mappings. In this release
CrispRVariants introduces an experimental parameter chimeras = "merge", which reconstructs a linear alignment
for the simplest case of two aligned regions separated by a large gap with at most 10 bases multi-mapped to
both segments. Setting chimeras = "merge" means that these simple, “long-gap” chimeras can be counted and
displayed separately from more complex chimeric reads. However, be aware that the exact endpoints of the gaps
may be ambiguous and we do not at present have a method for indicating ambiguous mapping.

If considering a large region, e.g. the entire amplicon, use the minoverlap parameter to set the minimum number of
aligned positions overlapping the target required for a read to be counted. For example, minoverlap = 10 means

that reads with an aligned range spanning at least 10 bases of the target will be counted.

Assuming the above parameters are defined, the following code will set up a CrisprSet object and plot the variants:

crispr_set <- readsToTarget(reads, target = target, reference = reference,
target.loc = target.loc)

plotVariants(crispr_set)

or use plotVariants(crispr_set, tzdb) to additionally show the target

location with respect to the transcripts <if a Transcript Database

txddb 7s available

3 Case study: Analysis of ptena mutant spectrum in zebrafish

The data used in this case study is from the Mosimann laboratory, UZH.

3.1 Convert AB1-format Sanger sequences to FASTQ

This data set is from 5 separate clutches of fish (1 control - uninjected, 2 injected with strong phenotype, 2 injected
with mild phenotype), with injections from a guide against the ptena gene. For this exercise, the raw data comes as
AB1 (Sanger) format. To convert AB1 files to FASTQ, we use ablToFastq(), which is a wrapper for functions in the

“sangerseqR" package with additional quality score trimming.

Although there are many ways to organize such a project, we organize the data (raw and processed) data into a set of
directories, with a directory for each type of data (e.g., ‘abl’ for ABL files, ‘fastq’ for FASTQ files, ‘bam’ for BAM files,
etc.); this can continue with directories for scripts, for figures, and so on. With this structure in place, the following code

sets up various directories.

library(CrispRVariants)
library(sangerseqR)

List AB1 filenames, get sequence names, make names for the fastq files
Note that we only include one abl file with CrispRVariants because
of space constraints. All bam files are included

data_dir <- system.file(package="CrispRVariants", "extdata/abl/ptena')
fq_dir <- tempdir()

CrispRVariants User Guide 4

abl_fnames <- dir(data_dir, "abl$", recursive=TRUE, full=TRUE)
sq_nms <- gsub(".abl","" ,basename(abl_fnames))

Replace spaces and slashes in filename with underscores
fq_fnames <- pasteO(gsub("[\ [\\/]", "_", dirname(abl_fnames)), ".fastq")
abifToFastq to read AB1 files and write to FASTQ
dummy <- mapply(function(u,v,w) {
abifToFastq(u,v,file.path(fq_dir,w))
}, sq_nms, abl_fnames, fq_fnames)

We will collect sequences from each embryo into the same FASTQ file. Note that abifToFastq appends output to existing
files where possible. In this example, there is only 1 sequence, which will be output to 1 file:

length(unique (abl_fnames))
[1] 1

length(unique (fq_fnames))
[1] 1

Some of the AB1 files may not have a sufficient number of bases after quality score trimming (default is 20 bases). In
these cases, abifToFastq() issues a warning (suppressed here).

3.2 Map the FASTQ reads

We use FASTQ format because it is the major format used by most genome alignment algorithms. At this stage, the
alignment could be done outside of R (e.g., using command line tools), but below we use R and a call to system() to
keep the whole workflow within R. Note that this also requires various software tools (e.g., bwa, samtools) to already be
installed.

The code below iterates through all the FASTQ files generated above and aligns them to a pre-indexed genome.

library("Rsamtools")

BWA indices were generated using bwa version 0.7.10

bwa_index <- "GRCHz10.fa.gz"

bam_dir <- system.file(package="CrispRVariants", "extdata/bam")
fq_fnames <- file.path(fq_dir,unique(fq_fnames))

bm_fnames <- gsub(".fastq$",".ban",basename(fq_fnames))
srt_bm_fnames <- file.path(bam_dir, gsub(".bam"," s",bm_fnames))

Map, sort and index the bam files, Temove the unsorted bams
for(i in 1:length(fq_fnames)) {
cmd <- pasteO("bwa mem ", bwa_index, " ", fq_fnames[i],

" | samtools view -Sb - > ", bm_fnames[i])
message(cmd, "\n"); system(cmd)
indexBam(sortBam(bm_fnames[i],srt_bm_fnames[i]))
unlink(bm_fnames[i])

}

See the help for bwa index at the bwa man page and for general details on mapping sequences to a genome reference.

http://bio-bwa.sourceforge.net/bwa.shtml

CrispRVariants User Guide 5

3.3 List the BAM files

To allow easy matching to experimental condition (e.g., useful for colour labeling) and for subsetting to experiments
of interest, we often organize the list of BAM files together with accompanying metadata in a machine-readable table
beforehand. Here we read the bam filenames from a metadata table which also contains sample names and experimental
grouping information. Note that we could also have used the bam filenames listed above.

The metadata and bam files for this experiment are included with CrispRVariants
library("gdata")

md_fname <- system.file(package="CrispRVariants", "extdata/metadata/metadata.xls")
md <- gdata::read.xls(md_fname, 1)

md

#it bamfile
1 abl_ptena_phenotype_embryo_1_s.bam
2 abl_ptena_phenotype_embryo_2_s.bam

3 abl_ptena_wildtype_looking embryo_1_s.bam
4 abl_ptena_wildtype_looking embryo_2_s.bam

5 abl_ptena_uninjected_embryo_1_s.bam

#it directory Short.name Targeting.type sgRNA1
1 ptena/phenotype/embryo 1 ptena 1 single ptena_ccA
2 ptena/phenotype/embryo 2 ptena 2 single ptena_ccA
3 ptena/wildtype looking/embryo 1 ptena 3 single ptena_ccA
4 ptena/wildtype looking/embryo 2 ptena 4 single ptena_ccA
5 ptena/uninjected/embryo 1 control single ptena_ccA
sgRNA2 Group

1 NA strong

2 NA strong

3 NA mild

4 NA mild

5 NA control

Get the bam filenames from the metadata table
bam_dir <- system.file(package="CrispRVariants", "extdata/bam")
bam_fnames <- file.path(bam_dir, md$bamfile)

check that all files exzist
all(file.exists(bam_fnames))
[1] TRUE

3.4 Create the target location and reference sequence

Given a set of BAM files with the amplicon sequences of interest mapped to the reference genome, we need to collect
a few additional pieces of information about the guide sequence and define the area around the guide that we want to
summarize the mutation spectrum over.

The coordinates of the region of interest can be obtained by running BLAST or BLAT on the guide sequence or
by mapping the guide sequence to the reference sequence. The coordinates, or “target” should be represented as a
GenomicRanges::GRanges object. This can be created directly, but here we will import the coordinates of the guide
sequence from a BED file using the rtracklayer package. The import() commmand below returns a GRanges object.

library(rtracklayer)

Represent the guide as a GenomicRanges::GRanges object

gd_fname <- system.file(package="CrispRVariants", "extdata/bed/guide.bed")
gd <- rtracklayer::import(gd_fname)

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://genome.ucsc.edu/FAQ/FAQblat.html

CrispRVariants User Guide 6

gd

GRanges object with 1 range and 2 metadata columns:

#it segnames ranges strand | name score
#it <Rle> <IRanges> <Rle> | <character> <numeric>
#i [1] chri17 [23648474, 23648496] - ptena_ccA 0
-

seqinfo: 1 sequence from an unspecified genome; no seqlengths

The 23bp (including PAM) ptena guide sequence used in this experiment is located on chromosome chrl7 from 23648474-
23648496. We prefer to analyse a slightly larger region. Below, we'll extend the guide region by 5 bases on each side
when counting variants. Note that the expected cut site (used later for labeling variants), after extension, isat base 22
with respect to the start of the new target sequence.

gdl <- GenomicRanges::resize(gd, width(gd) + 10, fix = "center")

With the Bioconductor BSgenome packages, the reference sequence itself can be retrieved directly into a DNAStringSet
object. For other genomes, the reference sequence can be retrieved from a genome by first indexing the genome with
samtools faidx and then fetching the required region (for an alternative method, see the note for Windows and Galaxy
users below). Here we are using the GRCHz10 zebrafish genome. The reference sequence was fetched and saved as
follows:

system("samtools faidx GRCHz10.fa.gz")

reference=system(sprintf ("samtools faidx GRCHz10.fa.gz %s:%s-%s",
seqnames (gdl) [1], start(gdl) [1], end(gdl) [1]),
intern = TRUE) [[2]]

The guide is on the negative strand, so the reference needs to be reverse complemented
reference=Biostrings: :reverseComplement (Biostrings: :DNAString(reference))
save(reference, file = "ptena_ GRCHz10_ref.rda")

We'll load the previously saved reference sequence.

ref_fname <- system.file(package="CrispRVariants", "extdata/ptena_GRCHz10_ref.rda")
load (ref_fname)

reference

33-letter "DNAString" instance

seq: GCCATGGGCTTTCCAGCCGAACGATTGGAAGGT

Note the NGG sequence (here, TGG) is present with the 5 extra bases on the end.

3.4.1 Note for Windows and Galaxy Users

If you do not have a copy of the genome you used for mapping on the computer you are using to analyse your data, or
you cannot install samtools because you are working on Windows, CrispRVariants provides an alternative, albeit slower,
method for fetching the reference sequence:

First read the alignments into R. The alignments must include

the read sequences and the MD tag

alns <- GenomicAlignments::readGAlignments(bam_fnames[[1]],
param = Rsamtools::ScanBamParam(tag = "MD", what = c('"seq", "flag")),
use.names = TRUE)

Then reconstruct the reference for the target region.
If no target region is given, this function will reconstruct
the complete reference sequence for all reads.

CrispRVariants User Guide 7

rfa <- refFromAlns(alns, gdl)

The reconstructed reference sequence ts tdentical to the sequence
extracted from the reference above

print(rfa == reference)

[1] TRUE

Note that the object alns created above can be directly passed to the function readsToTarget (see below) instead of
the bam filenames. If there is more than one bam file, readsToTarget can also accept a GAlignmentsList object (see
the GenomicAlignments package) for more details).

3.5 Creating a CrisprSet

The next step is to create a CrisprSet object, which is the container that stores the relevant sequence information,
alignments, observed variants and their frequencies.

Note that the zero point (target.loc parameter) is 22

crispr_set <- readsToTarget(bam_fnames, target = gdl, reference = reference,
names = md$Short.name, target.loc = 22)

crispr_set

CrisprSet object containing 5 CrisprRun samples

Target location:

GRanges object with 1 range and 2 metadata columns:

#i#t segnames ranges strand | name score
<Rle> <IRanges> <Rle> | <character> <numeric>
#i# [1] chri7 [23648469, 23648501] - ptena_ccA 0
o -

seqinfo: 1 sequence from an unspecified genome; no seqlengths
[1] "Most frequent variants:"

#H# ptena 1 ptena 2 ptena 3 ptena 4 control
no variant 3 4 4 0 7
-1:4D 0 0 0 2 0
6:1D 0 0 0 1 1
1:71 1 0 0 0 0
2:1D,4:51 0 0 0 1 0
Other 0 0 1 1 0

The counts table can be accessed with the "wvariantCounts" function
vc <- variantCounts(crispr_set)

print(class(vc))

[1] "matrix"

You can see that in the table of variant counts, variants are summarised by the location of their insertions and deletions
with respect to the target site. Non-variant sequences and sequences with a single nucleotide variant (SNV) but no
insertion or deletion (indel) are displayed first, followed by the indel variants from most to least frequent For example, the
most frequent non-wild-type variant, “-1:4D" is a 4 base pair deletion starting 1 base upstream of the zero point.

3.6 Creating summary plots of variants

We want to plot the variant frequencies along with the location of the guide sequence relative to the known transcripts.
If you do this repeatedly for the same organism, it is worthwhile to save the database in a local file and read in with
loadDb(), since this is quicker than retrieving it from UCSC (or Ensembl) each time.

https://bioconductor.org/packages/release/bioc/html/GenomicAlignments.html

CrispRVariants User Guide 8

We start by creating a transcript database of Ensembl genes. The gtf was downloaded from Ensembl version 81. We first
took a subset of just the genes on chromosome 17 and then generated a transcript database.

Extract genmes on chromosome 17 (command line)

Note that the Ensembl gtf does mnot include the "chr" prefixz, so we add it here
gtf=Danio_rerio.GRCz10.81.gtf.gz

zcat ${gtf} | awk '($1 == 17){print "chr"$0}' > Danio_rerio.GRCz10.81_chrl7.gtf

In R

library(GenomicFeatures)

gtf_fname <- "Danio_rerio.GRCz10.81_chrl7.gtf"

txdb <- GenomicFeatures::makeTxDbFromGFF (gtf_fname, format = "gtf")
saveDb(txdb, file= "GRCz10_81_chrl7_txdb.sqlite")

We now load the the previously saved database

plotVariants() is a wrapper function that groups together a plot of the transcripts of the gene/s overlapping the guide
(optional), CrispRVariants::plotAlignments(), which displays the alignments of the consensus variant sequences to the
reference, and CrispRVariants::plotFreqHeatmap(), which produces a table of the variant counts per sample, coloured by
either their counts or percentage contribution to the variants observed for a given sample. If a transcript database is
supplied, the transcript plot is annotated with the guide location. Arguments for plotAlignments() and plotFreqHeatmap()
can be passed to plotVariants() as lists named plotAlignments.args and plotFreqHeatmap.args, respectively.

The gridExztra package is rTequired to spectify the legend.key.height
as a "unit" object. It is not needed to call plotVariants() with defaults
library(gridExtra)

Match the clutch 2d to the column names of the wvariants
group <- md$Group

p <- plotVariants(crispr_set, txdb = txdb, gene.text.size = 8,
row.ht.ratio = ¢(1,8), col.wdth.ratio = c(4,2),
plotAlignments.args = list(line.weight = 0.5, ins.size

legend.symbol.size = 4),
plotFreqHeatmap.args = list(plot.text.size = 3, x.size = 8, group = group,
legend.text.size = 8,
legend.key.height = grid::unit(0.5, "lines")))
Warning: Ignoring unknown aesthetics: height

2,

The plotVariants() options set the text size of the transcript plot annotation (gene.text.size) and the relative heights
(row.ht.ratio) and widths (col.wdth.ratio) of the plots.

The plotAlignments arguments set the symbol size in the figure (ins.size) and in the legend (legend.symbol), the line
thickness for the (optional) annotation of the guide region and cleavage site (line.weight).

For plotFreqHeatmap we define an grouping variable for colouring the x-axis labels (group), the size of the text within the
plot (plot.text.size) and on the x-axis (x.size) and set the size of the legend text (legend.text.size).

3.7 Calculating the mutation efficiency

The mutation efficiency is the number of reads that include an insertion or deletion. Chimeric reads and reads containing
single nucleotide variants near the cut site may be counted as variant reads, non-variant reads, or excluded entirely. See
the help page for the function mutationEfficiency for more details.

We can see in the plot above that the control sample includes a variant sequence 6:1D, also present in sample ptena 4.
We will exclude all sequences with this variant from the efficiency calculation. We also demonstrate below how to exclude
particular variants.

CrispRVariants User Guide

ENSDARG00000071018
23646500 23647000 23647500 23648000 23648500

Reference

novariant-HAwAHA A

l:2|,3:5|-HAwAHAAA AN-AA

oo R R Y| R BB o o o o
o

Other

[e2)
ol
ol
N
~

|
|
| >
I
z
1
> >
> >
l z l

>
z
>
>

N 0 0 0 1 0 Percentage

o
=
=
o
o

T T
-20 -15 -10 -5 -11 5 10

control
ptena 3
ptena 4
ptena 1
ptena 2

QO #c \A ‘ TCGAACT
< neene Q) orr1e

Figure 1: (Top) schematic of gene structure showing guide location (left) consensus sequences for variants (right) variant
counts in each embryo.

Calculate the mutation efficiency, excluding indels that occur in the "control" sample
and further excluding the "control" sample from the efficiency calculation

eff <- mutationEfficiency(crispr_set, filter.cols = "control", exclude.cols = "control")
eff

ptena 1 ptena 2 ptena 3 ptena 4 Average Median Overall

25.00 42.86 20.00 80.00 41.96 33.93 42.86

StDev ReadCount

1.50 21.00

Suppose we just wanted to filter particular wvariants, nmot an entire sample.
This can be done using the "filter.vars" argument
eff2 <- mutationEfficiency(crispr_set, filter.vars = "6:1D", exclude.cols = "control")

CrispRVariants User Guide 10

The results are the same in thts case as only one wvariant was filtered from the control
identical (eff,eff2)
[1] TRUE

We see above that sample ptena 4 has an efficiency of 80%, i.e. 4 variant sequences, plus one sequence “6:1D" which is
counted as a non-variant sequence as it also occurs in the control sample.

3.8 Get consensus alleles

The consensus sequences for variant alleles can be accessed using consensusSeqs. This function allows filtering by variant
frequency or read count, as for plotAlignments and plotFreqHeatmap. Consensus alleles are returned with respect to
the positive strand.

sqs <- consensusSeqgs(crispr_set)

sgs

A DNAStringSet instance of length 8

#it width seq names

[1] 33 ACCTTCCAATCGTTCGGCTGGAAAGCCCATGGC no variant
[2] 29 NCCTTCCANTCGGCTGGAAAGCCCATGGC -1:4D

[3] 32 ACCTTCNNTCGTTCGGCTGGAAAGCCCATGGC 6:1D

[4] 40 NCCTTCCAATCAGTTCGAATTCGGCTGGAGAGCCCATAGC 1:71

[5] 34 NCCTTCCAATCGGTTCGGCTGGAAAGCCCATGGC 1:11

[6] 40 NCCTTCCANCNCCTTCCTTTTCGGCTGGAAAGCCCATGGC 1:21,3:51
[7] 29 ANNTTCNNATCGGCTGGNAAGCCNNTGGC -2:4D

[8] 37 NCCTTCCACAAACACNTTCGGCTGGAAAGCCCATGGC 2:1D,4:51

The ptena guide %s on the megative strand.

Confirm that the reverse complement of the "no wvariant” allele
matches the reference sequence:

Biostrings: :reverseComplement(sqs[["no variant"]]) == reference
[1] TRUE

3.9 Plot chimeric alighments

When deciding whether chimeric alignments should be considered as variant sequences, it can be useful to plot the
frequent chimeras.

ch <- getChimeras(crispr_set, sample = "ptena 4")

Confirm that all chimeric alignments are part of the same read
length(unique(names(ch))) ==
[1] TRUE

Set up points to annotate on the plot
annotations <- c(resize(gd, 1, fix = "start"), resize(gd, 1, fix = "end"))

annotations$name <- c('"ptena_start", "ptena_end")

plotChimeras(ch, annotations = annotations)

CrispRVariants User Guide 11

Chromosomal location

23648656 -
23648640 -

23648620 -
23648600 -
23648580 -
23648560 -
23648540 -
23648520 -
23648500 -
23648480 -
23648460 -
23648440 -

Chromosome
chr17

23648420 -

T T T T T ‘}_
o o o o o

o o o o o o
— N ™ < To]

Read location

Here we see the read aligns as two tandem copies of the region chr17:23648420-23648656. The endpoint of each copy is
not near the guide sequence. We do not consider this a genuine mutation, so we'll recalculate the mutation efficiency
excluding the chimeric reads and the control variant as before.

mutationEfficiency(crispr_set, filter.cols = "control", exclude.cols = "control",

##
##
##
#i#

include.chimeras = FALSE)

ptena 1 ptena 2 ptena 3 ptena 4 Average Median Overall

25.00

42.86 0.00 75.00 35.71 33.93 36.84

StDev ReadCount

1.50

19.00

We see that the mutation effiency for “ptena 4" is now 75%, i.e. 3 genuine variant sequences, 1 sequence counted as
“non-variant” because it occurs in the control, and the chimeric read excluded completely

4 Choosing the strand for display

CrispRVariants is capable of tabulating variants with respect to either strand. By default, variant alleles are displayed
with respect to the target strand, i.e. sequences for a guide on the negative strand are reverse complemented for display.
For some applications it may be preferable to display the variants on the opposite strand, for example if a guide on the
negative strand is used to target a gene on the positive strand. The display strand is controlled using the orientation
parameter in readsToTarget(s) during initialization.

To illustrate, we will plot the variants for ptena on the positive strand. Note that the only changes to the initialization
code is the orientation parameter. In particular, the target.loc is still specified with respect to the guide sequence and the
reference is still the guide sequence, not its reverse complement.

CrispRVariants User Guide 12

crispr_set_rev <- readsToTarget(bam_fnames, target = gdl, reference = reference,
names = md$Short.name, target.loc = 22,
orientation = "opposite")
plotVariants(crispr_set_rev)

Reference - 4 7 5 5 8

no variant 4

3:4D

6:1D

Percentage
~1:71 1 0 0 0 0 °
25

50

—-1:114 75

o
[
o
o
o
|

100

2:51,-1:21 4 0 1 0 0 0
Other - 0 0 1 1 0
T T L) T T T T T T T T T

10 5 1-1 -5 -10 -15 -20 ~ N ® ~ °

] ©] « 5

c c c c c

Q Q Q Q =}

a a IS a e

O AGTICGA W CNCCT ® G

<& CAAAC O ctT

TableGrob (2 x 1) "arrange": 2 grobs

z cells name grob
1 1 (1-1,1-1) arrange rect[GRID.rect.229]
2 2 (2-2,1-1) arrange gtable[arrange]

Note that variants are labelled with respect to their leftmost coordinate, so the labelled variant location changes when
plotting on the opposite strand.

CrispRVariants User Guide 13

5 Multiple guides

CrispRVariants accepts an arbitrarily long reference sequence and target region. By default, reads must span the target
region to be counted. Since v1.3.6, a new argument minoverlap to readsToTarget is available, which allows reads
which do not span the target region to be counted, provided they have at least minoverlap aligned bases overlapping the
target. This is particularly important when the target region is close to or greater than the sequencing read length.

When using CrispRVariants with multiple guides, initialisation of a CrisprSet object is done as for a single guide, but
with the reference and target parameters corresponding to a region spanning the guides of interest. One important
parameter is the target location, or target.loc which determines how the variant alleles are numbered. For a single
guide, position zero would typically be the cut site. With multiple guides, possible zero points might include the cut site
of the leftmost guide or the first base of the amplified sequence. Multiple guide sequences are first indicated at the stage
of plotting.

In the example below, we reuse the ptena data used in the case study. In this experiment, a single guide was injected.
However, for illustrative purposes we will treat the data as if it was a paired injection of two nearby guides.

We create a longer region to use as the "target”

and the corresponding reference sequence

gdl <- GenomicRanges::resize(gd, width(gd) + 20, fix = "center")

reference <- Biostrings::DNAString("TCATTGCCATGGGCTTTCCAGCCGAACGATTGGAAGGTGTTTA")

At this stage, target should be the entire region to display and target.loc should
be the zero point with respect to this region
crispr_set <- readsToTarget(bam_fnames, target = gdl, reference = reference,

names = md$Short.name, target.loc = 10,

verbose = FALSE)

Multiple guides are added at the stage of plotting
The boundaries of the guide regions must be specified with respect to the
given target region
p <- plotVariants(crispr_set,
plotAlignments.args = list(pam.start = c(6,35),
target.loc = c(10, 32),
guide.loc = IRanges::IRanges(c(6, 25),c(20, 37))))

CrispRVariants User Guide 14

Reference 4 7 5 5 8
no variant -{Tc ART@CC AT cTTTcca@cclBaacBaTT AA.T.TTTA_T.
SNV:-2 -fcATT@ccch citrccaABcc@anc@aTTgdan@@TE@TTTA| O O 1 0 O
SNV:5 HFcARTBICCAT ccirccal@ccBaac@aTTEldArBBNNNTTA| O O O O 1 percentage
17:4DTcATT@ccAT ciTrccaA@ccBan----TEjdarB@BNENTTA| O O O 2 O 0
23:1D-TCcATTEccAT citrcca@cc@aac@anngl-ra@@T@7rTTN]| O O O 1 1 25
18:71{TcATTBCTAT, CTCTCCA.CC.AA'&ATT AABENETTTA|l 2 0O O O O -50
75
18:114TcATTEcCcAT, CTTTCCAlcclAAC‘ATT AABENENTTAIl O 1 0 O O =
100
18:21,20:51 {TCATTECC AT CTTTCCA.CC.AA&ANT AABENENTTAIl O 1 0 O O
16:4D {TcATT@ccANNEEBcTTNCCABICCBA- - - -FnEAANNTETTNN| O 2 0 0 O
(0]
19:1D,21:51 {TCART@CcC AR ciTrcca@ccBaang-TTElEAABENENTTAl O O O 1 O
Other - 0O 0 1 1 o0
T T TT T T T T T T T T T T T
-10 -5 -11 5 10 15 20 25 30 < &N ™o ¥ 3
T © ©® ®© 5
c c c c c
Q Q Q Q o
2 28 8 8 ©
O AG VvV C @ TCGAACT
& AGGNG O GTTTG
p
TableGrob (2 x 1) "arrange": 2 grobs
oz cells name grob
1 1 (1-1,1-1) arrange rect[GRID.rect.359]
2 2 (2-2,1-1) arrange gtable[arrange]

In the above call to plotAlignments, pam.start and pam.end control where the box around the PAM sequence is
drawn, target.loc controls where vertical lines are drawn (note this does not have to match the target.loc passed to
readsToTarget), and guide.loc controls where the box around the guide is drawn.

6 Changing the appearance of plots

Note that arguments for CrispRVariants::plotAlignments described below can be passed to CrispRVariants::plotVariants
as a list, eg. plotAlignments.args = list(axis.text.size = 14). Similarly, arguments for CrispRVari-
ants::plotFreqHeatmap are passed through plotVariants via plotFreqHeatmap.args.

6.1 Filtering data in plotVariants

For the following examples, we will use the ptena data set. We must first load the data and create a
CrispRVariants::CrisprSet object.

Setup for ptena data set

library("CrispRVariants")

library("rtracklayer")

library("GenomicFeatures")

CrispRVariants User Guide 15

library("gdata")

Load the guide location

gd_fname <- system.file(package="CrispRVariants", "extdata/bed/guide.bed")
gd <- rtracklayer: :import(gd_fname)

gdl <- resize(gd, width(gd) + 10, fix = '"center")

The saved reference sequence corresponds to the guide

plus 5 bases on etther side, t.e. gdl

ref_fname <- system.file(package="CrispRVariants",
"extdata/ptena_GRCHz10_ref.rda")

load(ref_fname)

Load the metadata table, which gives the sample names
md_fname <- system.file(package="CrispRVariants",

"extdata/metadata/metadata.x1ls")
md <- gdata::read.xls(md_fname, 1)

Get the list of bam files
bam_dir <- system.file(package="CrispRVariants", "extdata/bam")
bam_fnames <- file.path(bam_dir, md$bamfile)

Check that all files were found
all(file.exists(bam_fnames))
[1] TRUE

crispr_set <- readsToTarget(bam_fnames, target = gdl, reference = reference,
names = md$Short.name, target.loc = 22,
verbose = FALSE)

Load the transcript database

txdb_fname <- system.file("extdata/GRCz10_81_ptena_txdb.sqlite",
package="CrispRVariants")

txdb <- AnnotationDbi::loadDb(txdb_fname)

Here is the ptena data set plotted with default options:

p <- plotVariants(crispr_set, txdb = txdb)
'select()' returned 1:many mapping between keys and columns
'select()' returned 1:many mapping between keys and columns

CrispRVariants User Guide 16

23646500 23647000 23647500 23648500
Reference A 5 8
no variant{@lc c A TEIEIBIc T T TccalBlc cl@aa TTlEGAAlGE T -T.
~14D{@lccaTf@@@ctTTccalcc@an -fE@~ @8~ | 0 0 012 O
Percentage
61D{@lccaTfg@@cTtTTcca@cclEan nnB-aAaBBT| 0 0 0 1 1 o
171{@ctaT@@8cTcTccal@cclEaa TiEEsABE~| 1 0 0 0 O 25
11q@ccat@@@crrrccal@ccl@aa ATTEEA BB~ | 0 1 0 0 O =50
o 75
12135/ {@ccatl@@@crrrccal@ccl@aa nNTEEAABE~N | 0 1 0 0 O -100
24D{@lccann@BlcTinccaflccl@a--]--invBaannF| 0 12 0 0 O
(@]
21045 {@lccaT@EBlc it iccaflcc@aani@-TTEEAABEN~N | 0O 0 0 1 O
Other A 0O 0O 1 1 o0
T T T T T T T T T T T T T
=20 -15 -10 -5 -11 5 10 — ™o < °
g g g g £
[J] [V [J] (4] @]
2 a o a ©°
QO AG VvV C @ TCGAACT

& AGGNG O GTTTG

The layout of this plot is controlled mainly by two parameters: row.ht.ratio and col.wdth.ratio. row.ht.ratio
(default ¢(1,6)) controls the relative sizes of the transcript plot and the other plots. Below we show how to change the
ratio so that the transcript plot is relatively larger:

p <- plotVariants(crispr_set, txdb = txdb, row.ht.ratio = c(1,3))
'select()' returned 1:many mapping between keys and columns
'select()' returned 1:many mapping between keys and columns

CrispRVariants User Guide 17

ENSDARG00000071018
-
-
-
-
]
23646500 23647000 23647500 23648000 23648500
Reference - 4 7 5 5 8
no variant TGl A AlGlGl T 0
-1:4D4@€lc c AT@@Elc TTTccaA@ccl@an --TE@AA@E@~N|| 0 0 0 2 O© Percentage
6:1DH@lccAaT@@@cTTTCCA[Gcc@aa ANNEB-AA@E@T| O 0 0O 1 1 0
171{€lc T AT[@EGIc TcTcca@cc@aa ATTElElAABEIN (1 0 0 0 O =
11{@lccaT@@8lc TTTccaBlccl@aa A TEEAAEEN| 0O 1 0 0 O -50
1:21,351q{[@lccAaT@E@lc TTTcca@Blccl@aa A<>N TIEG A AlGGEIN 0O 1 0 0 O -75
-24D4@lccannN@@cTincca@cclEAa--]--Enn@aannF|l O 1 0 0 O -100
O
2:1D4:51{l@lc c A TElGIGlc TT T cc Af@lc cl@a A -FTE@AA@@n~N| 0 0 0 1 o0
Other A 0O 0 1 1 O
20 -5 -10 5 -1l 5 0 < ~ o v 5
T ® © ® 5
c c c c c
Q (]] Q o
8 & & © ©°
QO AG VvV C @ TCGAACT

& AGGNG O GTTTG

Similarly, col.wdth.ratio controls the width ratio of the alignment plot and the heatmap (default c(2,1), i.e. the
alignment plot is twice as wide as the heatmap). Below we alter this to make the alignment plot comparatively wider:

p <- plotVariants(crispr_set, txdb = txdb, col.wdth.ratio = c(4,1))

CrispRVariants User Guide

ENSDARG00000071018

23646500 23647000 23647500 23648000 23648500

Reference -

no variant | B € el A ISRl c T €
-1:4D{f@lc c A T[E@8lc T T T CccC
61D{f[@lccaTf@@@c T TTCC
171{[@c 1A T[@E8cTCcTCC
11{@lccaTl@@gcTTTCC
12135/ {f@lc c A TfEl@8lc T T T CccC
-24D{@lc ¢ A n NERBlc T TINC C
aATl@e@écTtrtTCcc

Percentage
0
25
50
75

100

(¢}

2:1D,4:51 @€

Other A

-20 -15 -10 -5 -11 5 10

Q AG VvV C @ TCGAACT

& AGGNG O GTTTG

The remaining examples in this section use the gol data set.

Load gol data set
library("CrispRVariants")
data("gol_clutchl")

18

The data used in plotAlignments and plotFreqHeatmap can be filtered by either frequency via min.freq, count via
min.count, or to show a set number of alleles sorted by frequency, via top.n. Within plotVariants, these filtering
options need to be set for both plotAlignments and plotFreqHeatmap. We also add space to the bottom of the plot

to prevent clipping of the labels.

library(GenomicFeatures)

p <- plotVariants(gol, plotAlignments.args = list(top.n = 3),
plotFreqHeatmap.args = list(top.n = 3),
left.plot.margin = ggplot2::unit(c(0.1,0,5,0.2), "lines"))

CrispRVariants User Guide

Reference A 8 6 9 89 91513
-33Dq@TcTTl@GETCcTCTClGCAlGEGA---JTlGcTl@GAGCcCCA|l3 0 3

-38:38D - - -------------------- TEICTIEIBIABICCA||0 0 0O 0 0O O@O0

224/{@lTcTTEGGITCTCcTCEGlc AGGIA T T%AT-AICCA 01003300

T T T T T T T T T T T T T T T T

-20 -15 -10 -5 -11 5 10 < N ™S 0o~ ®

E T S EEECEEC

T 8 @ @ @ @ © &

QO O O O O O O O

QL 99 0 000 0

© 241 (4 common alleles) G 6 G 6 G 6 G o

L e B T T e O B B o |

W W N N N T T T

© © © o o © o o

DO D D 0D DD DD

At present, filtering by sample (column) is possible for plotFreqHeatmap via the
used to reorder columns), but not plotAlignments.

plotVariants(gol, plotAlignments.args = list(top.n = 3),

plotFreqHeatmap.args = list(top.n = 3, order = c(1,5,3)),
left.plot.margin = ggplot2::unit(c(0.1,0,5,0.2), "lines"))

Reference 8 9 9
-33D4@TcTTEEGTCTCTC[BICc AlGGIA - - -|[TlBlc TE@IAGICC A 3 0

—3838Dq - - - -~ - - - - - - - - - - - - - - TElc Tlg@AalGicca 0 0 0

224|q[@T cTT@GTCTCTClGBCAGEGAT TciA TIGG AGCC A 0 3 0

T T T T T T T T T T T

-20 -15 -10 -5 -11 5 10 — 0 ™

1= < <

< < I

Q. Q. o

Kz @0 0

© 241 (4 common alleles) G G =}

i i i

L L L

© © ©

(@) (@) (2]

TableGrob (2 x 1) "arrange": 2 grobs
z cells name grob

1 1 (1-1,1-1) arrange rect[GRID.rect.1089]
2 2 (2-2,1-1) arrange gtable[arrange]

6.2 plotAlignments

6.2.1 Insertion symbols

The symbols indicating insertions are controlled by four parameters. ins.size (default 3) controls the size of the symbols

within the plot area.

plotAlignments(gol, top.n = 3, ins.size = 6)

25

50

75

100

25

50

75

100

19

order parameter (which can also be

CrispRVariants User Guide 20

Reference -

-3:3D A

-38:38D ~

2:241 7

" TERET ERRRT Y]
T

T T T
-20 -15 -10 -5

. 24| (4 common alleles)

By default the symbols in the legend are the same size as those in the plot, but this can be controlled separately with
legend.symbol.size.

plotAlignments(gol, top.n = 3, legend.symbol.size = 6)
Warning: Ignoring unknown aesthetics: height

Reference -
—3:3D-.+c—7—‘9-+c+c+c.c A-A S Emm— C—T—-A.CCA
-38:38D4 - - - - - - - - - - - - - - - - - - - C—Y—-A.CCA
2:24I-.—T—C—T—F-+C—T—c—'r—c.c A-A A—T—-A.C cC A
T T T

T T T
-20 -15 -10 -5 -1 1 5 10
. 241 (4 common alleles)

As long sequences can make the plot difficult to read, by default only the length of insertions greater then 20bp is shown.
This can be changed with the max.insertion.size parameter. If there is more than one allele, the number of (frequent)
alleles is indicated.

plotAlignments(gol, top.n = 5, max.insertion.size = 25)

CrispRVariants User Guide 21

Reference -

-3:3D 4

—-38:38D o

2:241 4

-9:10D -

-1:31,5:211

T T
-15 -10

CTTGGNNNNTCTTGGATCTCGCAN,

CTCCCTTGGATCTCGCAGGAN,
o JETENLNDN o Sresaecrancicsoe v orc
CTCTCTTGGATCTCGCANGAN '
NTNNNTCTCTCTTGGATCTCGCAG

Finally, the parameter min.insertion.freq (default 5%) controls how many alleles are displayed at each insertion locus.
In large data sets, there will be a substantial proportion of reads with sequencing errors, and we may only wish to display

the most common sequences.
Here we set a fairly high value of 50/ for min.insertion. freq
As ambiguous nucleotides occur frequently in this data set,

there are no alleles passing this cutoff.
plotAlignments(gol, top.n = 5, min.insertion.freq = 50)

Reference

-3:3D 4

—-38:38D o

2:241 4

—9:10D -

-1:31,5:211

o 21 & 241(0commonalleles)y Y GTC

max.insertion.size and min.insertion.freq can be combined. In this case, alleles longer than max.insertion.size
but less frequent than min.insertion.freq will be collapsed.

plotAlignments(gol, top.n = 5, max.insertion.size = 25, min.insertion.freq = 50)

CrispRVariants User Guide 22

-38:38Dq - - - - - - - - = - = - = - - - - - -

O CTCTCTTGGATCTCGCAGGAN <& 241 (0 common alleles) V¥ GTC

6.2.2 Whitespace between rows

The space between rows is controlled with the tile.height parameter (default 0.55). Values closer to 0 increase the
space between rows, whilst values closer to 1 decrease the space between rows.

No white space between rows
plotAlignments(gol, top.n = 3, tile.height = 1)

Reference

—-3:3D A

—38:38D o

2:241 4

© 241 (4 common alleles)

More white space between rows
plotAlignments(gol, top.n = 3, tile.height = 0.3)

CrispRVariants User Guide 23

Reference -

3308t c T TfE@El T c T cTcf@lc AldEa - - -|TElc T @EAEccoa

e e — © [

2oa BT ¢ v AT ¢ vcv c@Ble B~ +1+I o T A e s

—20 —15 —10 —5 5 10

© 241 (4 common alleles)

6.2.3 Box around guide

The black box around the guide sequence can be removed by setting highlight.guide = FALSE.
plotAlignments(gol, top.n = 3, highlight.guide = FALSE)

Reference A
—3:3D-.—T—c—7—v—-—*—c+c—'r—c.c A-A
-38:38D4 - - - - - - - - - - - - - - - - - - -
2:24I.—Y— —7—7—-—1|Lc—'r—c—'r—c.c A-
T

T T
—20 —15 —10 —5 -11 5 10

© 241 (4 common alleles)

By default, the box around the guide is drawn from 17 bases upstream of the target.loc to 6 bases downstream.
For experiments with a truncated guide, or other non-standard guide location, the box must be manually specified.
The guide location can be altered by setting the guide.loc parameter. This can be either an IRanges: : IRanges or
GenomicRanges: : GRanges object.

library(IRanges)

guide <- IRanges::IRanges(15,28)
plotAlignments(gol, top.n = 3, guide.loc = guide)
Warning: Ignoring unknown aesthetics: height

CrispRVariants User Guide 24

Reference -
ol e Ble e He B |EeEE-E-

R +ql £ NP

—20 —15 —10 5 10

© 241 (4 common alleles)

6.2.4 Text sizes

The text showing bases within the alignment plot is controlled by plot.text.size (default 2), and can be removed
completely by setting plot.text.size = 0. The axis labels and legend labels are controlled with axis.text.size
(default 8) and legend.text.size (default 6) respectively. The number of columns in the legend is controlled by
legend.cols (default 3).

Here we increase the size of the azis labels and make

two columns for the legend

plotAlignments(gol, top.n = 5, axis.text.size = 12,
legend.text.size = 12, legend.cols = 2)

Warning: Ignoring unknown aesthetics: height

Reference - KRNI RN o e eR e A RN A e ey | e I e
33D T c T TeNe T c T o T olBc AlGNE A - . |Tieic TienE AIC ¢ A
-38:38D1 - T - - - IFEcTEEEHEc ¢ -~
2:04|{[@ T ¢ T TEEEIT c T o T c@c -+-4—’-+-- &
_9:10D | ER T e TEES T e e - - - - TS A o A
~1:31,5:211{ 1T ¢ T THSEIT ¢ T o T cEc x NG » +it—+-—v—'-A-c c
~20 ~15 ~10 -5 11 5 10

o 211 (3 common alleles) v GTC
¢ 241 (4 common alleles)

6.2.5 Box around PAM

The argument highlight.pam determines whether a box around the PAM should be drawn.

CrispRVariants User Guide 25

Don't highlight the PAM sequence
plotAlignments(gol, top.n = 3, highlight.pam = FALSE)

Reference -
S0 EER EERRRE BN DEEEA BN B
—38:38D-———————————————————————'rlc—v—-AlCCA

R L +-(1 HE -

—20 —15 —10 5 10

© 241 (4 common alleles)

By default this box is drawn 3 nucleotides downstream of the target.loc. Other applications might require a different
region highlighted. This can be achieved by explicitly setting the start and end positions of the box, with respect to the
reference sequence.

Highlight 3 bases upstream to 3 bases downstream of the target.loc
plotAlignments(gol, top.n = 3, pam.start = 19, pam.end = 25)

Reference -
S EER EERRRE BN PEEEA BN B
—38238D'--—--—————————————————'i0+-AlCCA

e +q1 i B

—20 —15 —10 5 10

O 241 (4 common alleles)

The boxes around the guide and the PAM can both be changed to arbitrary locations, however note that the guide box is
specified by a ranges object whilst the PAM box is specified by start and end coordinates. Both coordinates are with
respect to the start of the reference sequence. The box around the guide is slightly wider than the box around the PAM.

plotAlignments(gol, top.n = 3, guide.loc = IRanges(5,10),
pam.start = 8, pam.end = 13)

CrispRVariants User Guide 26

Reference -
—3:3D-.—PC—7—Y—-+C—T—C—T—ch A-A —'PlC—Y—-AlCCA

R +q1 £ NP

—20 —15 —10 5 10

© 241 (4 common alleles)

The thickness of the lines showing the cut site, the guide and the PAM are controlled with 1ine.weight (default 1).
plotAlignments(gol, top.n = 3, line.weight = 3)

Reference -
—3:3D-.—Pc—v—v—-+c—'r—c—'r—clc A-A cC A
-3838Pf+———1— o B
2:24|.+ —V—Y—-+C—T—C—T—clc A- cC A
T T T T
—20 —15 —10 —5 -1 1 5 10

© 241 (4 common alleles)

6.2.6 Add a codon frame

If the codon frame with respect to the first base of the target region is known, it can be added to plot.alignments
using the argument codon.frame

plotAlignments(gol, top.n = 3, codon.frame = 1)

CrispRVariants User Guide 27

Reference -
: :] :
—3:3D-.T c.T T-T c.T C TchCZA-A - - - TlC T-AlC cC A
-38:38D4: - - -~ - -l- - SI- - —l- - —l- - -l - - Tlc T-AlCCA
: : : : : : : e : :

: : : : : _ -1 : _ : .

-11 5

10

T T
-20 -15 -10 -5

© 241 (4 common alleles)

6.2.7 Other modifications

To retreive the information used in plotAlignments when starting from a CrisprSet object, use the argument
create.plot = FALSE.

plot_data <- plotAlignments(gol, top.n = 3, create.plot = FALSE)
names (plot_data)

This data can be modified as required, then replotted using:
do.call(plotAlignments, plot_data)

6.3 plotFreqHeatmap

plotFreqHeatmap produces a heatmap of the counts or proportions of the variant alleles. Typically, plotFreqHeatmap
is passed a CrisprSet object, but it can also accept a matrix if greater flexibility is required (see below). As
plotFreqHeatmap returns a ggplot object, it can also be modified using standard ggplot2 syntax. For example, we
add a title to the plot below.

By default, when given an object of class CrisprSet, plotFreqHeatmap shows the allele counts and the header shows
the total number of on-target reads in each sample. For example, the following code shows the three most common
variant alleles in the gol dataset. The header here does not equal the sum of the columns as not all variants are shown in
the plot.

Save the plot to a wvariable then add a title using ggplot2 syntaz.

If the plot is not saved to a wvariable the unmodified plot is displayed.
p <- plotFreqHeatmap(gol, top.n = 3)

p + labs(title = "A. plotFreqHeatmap with default options")

6.3.1 Plotting allele proportions

When calling plotFreqHeatmap with a CrisprSet object the type argument controls the information shown in text in
the heatmap. Setting type = "counts" (the default) shows allele counts, setting type = "proportions" shows allele
proportions. This also affects the default header values. When type = "proportions" the header shows the column
sums, i.e. the percentage of the total number of reads shown in the plot.

CrispRVariants User Guide

A. plotFreqHeatmap with default options

Totalq4 8 6 9 8 9 9 15 13

Percentage

0
—-3:3D A

25

50
—-38:38D

75

100

2:241 4

o
=
o
o
w
w
o
o

gol F1 crispant 1
gol F1 crispant 2
gol F1 crispant 3
gol F1 crispant 4
gol F1 crispant 5
gol F1 crispant 6
gol F1 crispant 7
gol F1 crispant 8

Figure 2: plotFreqHeatmap with default options

Totalq4 37.5 83.33 88.89 100 33.33 88.89 100 53.85 Percentage

0
-3:3D 1

25

50
—-38:38D A

75
2:241 4

o

16.67

o
o

33.33 33.33 100

o
o

gol F1 crispant 1
gol F1 crispant 2
gol F1 crispant 3
gol F1 crispant 4
gol F1 crispant 5
gol F1 crispant 6
gol F1 crispant 7
gol F1 crispant 8

Figure 3: plotFreqHeatmap showing allele proportions

plotFreqHeatmap(gol, top.n = 3, type = "proportions")

6.3.2 Changing the header

There are three standard options for the header when calling plotFreqHeatmap with an object of class CrisprSet:

» header = "default" shows total read counts when type =

= "counts" or column sums when type =
"proportions". See the examples above.

= header = "counts" shows total read counts. If variants are excluded, the values in the header do necessarily equal
the column totals. For example, see plot “C. Modified plotFreqHeatmap” below.

= header = "efficiency" shows the mutation efficiency, i.e. the percentage of reads that have an insertion or deletion
variant. The mutation efficiency is calculated using the default options of the function mutationEfficiency.

28

CrispRVariants User Guide 29

B. coloured X labels with tiles coloured by ¢

Count

Total4 8 6 9 8 9 9 15 13

—-3:3D A

-38:38D +

o

2:241 4

o
IR
o
o
w
w
o
o

gol F1 crispant 1
gol F1 crispant 2
gol F1 crispant 3
gol F1 crispant 4
gol F1 crispant 5
gol F1 crispant 6
gol F1 crispant 7
gol F1 crispant 8

Figure 4: plotFreqHeatmap with X-axis labels coloured by experimental group and tiles coloured by count instead of
proportion

6.3.3 Heatmap colours

The tiles may be coloured by either the percentage of the column totals (default), or by the counts, by setting as.percent

= FALSE. For example, see plot “B. coloured X labels with tiles coloured by count” below and contrast with plot “A.
plotFreqHeatmap with default options” above.

6.3.4 Changing colours of x-labels

The x-labels can be coloured by experimental group. To do this, a grouping vector must be supplied by setting parameter

group. Columns are ordered according to the levels of the group. There should be one group value per column in the
data.

ncolumns <- ncol(variantCounts(gol))

ncolumns

[1] 8

grp <- rep(c(1,2), each = ncolumns/2)

p <- plotFreqHeatmap(gol, top.n = 3, group = grp, as.percent = FALSE)

p + labs(title = "B. coloured X labels with tiles coloured by count")

The default colours are designed to be readable on a white background and colour-blind safe. These can be changed by
supplying a vector of colours for each level of the group. Colours must be supplied if there are more than 7 experimental
groups.
grp_clrs <- c("red", "purple")
p <- plotFreqHeatmap(gol, top.n = 3, group = grp, group.colours = grp_clrs,
type = "proportions", header = "counts",
legend.position = "bottom")
p <- p + labs(title = "C. Modified plotFregHeatmap")
p

6.3.5 Controlling the appearance of the legend

The legend position is controlled via the plotFregHeatmap argument legend.position, which is passed to
ggplot2: :theme. Similarly legend.key.height controls the height of the legend. See the ggplot docs for more

http://docs.ggplot2.org/current/theme.html

CrispRVariants User Guide 30

C. Modified plotFreqgHeatmap

Total{ 8 6 9 8 9 9 15 13
-3:304 | 87.5 0 20
-38:38D4 0 0 0 0 0 0 0
22414 0 16.67 0 0 33.33 33.33 0 0
- ~ © < 0 © ~ @
= = = = = = = =
@ © @© @ © @© @ ©
Q. Q. (e Q. o Q. Q. o
2 2 K] 2 9 R7] R 9
5 5 5 5 5 5 5 5
i i i i —l i i —
LL Lo LL L LL LL Lo LL
° © ° © © ° IS} ©
o [=2] o (=] o o [=2] o

Percentage 0 25 - 50 - 75 - 100

Figure 5: plotFreqHeatmap with labels showing allele proportions, header showing counts per sample and modified legend
position.

information.

plotFreqHeatmap(gol, top.n = 3,
legend.key.height = ggplot2::unit(1.5, "lines"))

F’ercentage
Total 4 0
~3:3D 2
~38:38D A
2:24114 0 1 0 0 3 3 0 0
T T T T T T T T

gol F1 crispant 1
gol F1 crispant 2
gol F1 crispant 3
gol F1 crispant 4
gol F1 crispant 5
gol F1 crispant 6

gol F1 crispant 7
gol F1 crispant 8

An additional example where the legend is placed at the bottom is shown above in plot C named “Modified plotFreqHeatmap”
above.

6.3.6 Further customisation

The function variantCounts returns a matrix of allele counts or proportions which can be passed to plotFreqHeatmap.
variantCounts allows filtering by number of alleles or allele frequency. When passing plotFreqHeatmap a matrix
instead of a CrisprSet, a header vector can also be supplied. If no header is supplied, the header is the column sums.
var_counts <- variantCounts(gol, top.n = 3)

(additional modifications to var_counts can be added here)
plotFreqHeatmap (var_counts)

CrispRVariants User Guide 31

6.4 barplotAlleleFreqs

barplotAlleleFregs includes two different colour schemes - a default rainbow scheme and a blue-red gradient. Note
that the transcript database txdb must be passed by name as this function accepts ellipsis arguments.

Here barplotAlleleFregs is run with the default parameters:

barplotAlleleFreqs(crispr_set, txdb = txdb)

Looking up variant locations

Loading required namespace: VariantAnnotation

'select()' returned many:1 mapping between keys and columns

'select()' returned many:1 mapping between keys and columns

Classifying variants

Warning in dispatchDots(.self$.getFilteredCigarTable, ...): dispatchDots
may not work as expected with S4 functions

ptena 1 2 4
ptena 2 2 7
ptena 3 2 5
ptena 4 3 5
control 2 8
0.00 0.25 0.50 0.75 1.00 4 3
o 2
< S
. no variant . inframe indel < 10 g
n
Chimeric . frameshift indel < 10
In this case barplotAlleleFregs is run with the alternative palette.
barplotAlleleFreqs(crispr_set, txdb = txdb, palette = "bluered")
Warning in dispatchDots(.self$.getFilteredCigarTable, ...): dispatchDots
may not work as expected with S4 functions
ptena 1 2 4
ptena 2 2 7
ptena 3 5
ptena 4 3 5
control 2 8
1 1
0.00 0.25 0.50 0.75 1.00 3 3
2 e
< =
. no variant inframe indel < 10 D
n

Chimeric . frameshift indel < 10

By default, a table of the number of sequences and alleles is plotted next to the barplot. This can be switched off. In
this case, barplotAlleleFreqgs will return an ggplot object, allowing further alteration of the appearance through the
usual ggplot2: :theme settings.

CrispRVariants User Guide 32

barplotAlleleFreqs(crispr_set, txdb = txdb, include.table = FALSE)
Warning in dispatchDots(.self$.getFilteredCigarTable, ...): dispatchDots
may not work as expected with S4 functions

ptena 1
ptena 2
ptena 3
ptena 4

control
0.00 0.25 0.50 0.75 1.00

. no variant . inframe indel < 10
Chimeric . frameshift indel < 10

barplotAlleleFreqs.CrisprSet uses VariantAnnotation::locateVariants to look up the variant locations with
respect to a transcript database. The default behaviour of barplotAlleleFreqgs.matrix is to perform a naive
classification of the variants as frameshift or non-frameshift by size. This approach ignores transcript scructure, but can
be useful to give a faster overview, or in cases where the transcript structure is unknown.

var_counts <- variantCounts(crispr_set)
barplotAlleleFreqgs(var_counts)

ptena 1 2 4
ptena 2 4 7
ptena 3 2 5
ptena 4 4 5
control 2 8
0.00 0.25 0.50 0.75 1.00 $ B

o 2

< S

. no variant . inframe indel <9 g

n

Other . frameshift indel < 9

If the parameter classify is set to FALSE, the variants are plotted with no further aggregation. If there are more than
seven variants, colours must be provided.

rainbowPal9 <- c("#781C81","#3F4EA1","#4683C1",
"#57A3AD", "#6DB388" , "#B1BE4E" ,
"#DFAS3A", "#E7T42F", "#D92120")

barplotAlleleFreqgs(var_counts, classify = FALSE, bar.colours = rainbowPal9)

CrispRVariants User Guide 33

ptena 1 2 4
ptena 2 _ 4 7
ptena 3 2 5
ptena 4 4 5
control 2 8
0.00 0.25 0.50 0.75 1.00 $ 4

o g

< S

oy

)

n

. no variant . 1:71 -2:4D
B -0 [1u [21D4sl
B 61D 1:21,3:51] other

An arbitrary classification can also be used. CrispRVariants provides some utility functions to assist in classify-
ing variants. Note that methods of the CrisprSet class are accessed with crisprSet$function() rather than
function(crisprSet).

Here are some examples of variant classification:

Classtfy variants as tinsertion/deletion/mized

byType <- crispr_set$classifyVariantsByType()

Warning in dispatchDots(.self$.getFilteredCigarTable, ...): dispatchDots
may not work as expected with S4 functions

byType

no variant -1:4D 6:1D
"no variant" "deletion" "deletion"
1:71 1:11 1:21,3:51
#it "insertion" "insertion" "multiple insertions"
-2:4D 2:1D,4:51 Other
"deletion" "insertion/deletion" "Other"

Classtfy variants by their location, without considering size

byLoc <- crispr_set$classifyVariantsByLoc(txdb=txdb)

Looking up variant locations

'select()' returned many:1 mapping between keys and columns

'select()' returned many:1 mapping between keys and columns

Classifying variants

Warning in dispatchDots(.self$.getFilteredCigarTable, ...): dispatchDots
may not work as expected with S4 functions

byLoc

no variant -1:4D 6:1D 1:71 1:11
"no variant" "coding" "coding" "coding" "coding"
1:21,3:51 -2:4D 2:1D,4:51 Other

"coding" "coding" "coding" "Other"

Coding wvariants can then be classified by setting a stize cutoff
byLoc <- crispr_set$classifyCodingBySize(byLoc, cutoff = 6)

byLoc

#i# no variant -1:4D 6:1D
"no variant" "frameshift indel < 6" "frameshift indel < 6"
1:71 1:11 1:21,3:51

"frameshift indel > 6" "frameshift indel < 6" "frameshift indel > 6"
-2:4D 2:1D,4:51 Other

CrispRVariants User Guide 34

"frameshift indel < 6" "inframe indel > 6" "Other"

Combine filtering and variant classification, using barplotAlleleFreqgs.matriz
vc <- variantCounts(crispr_set)

Select wariants that occur in at least two samples
keep <- names(which(rowSums(vc > 0) > 1))

keep

[1] "no variant" "6:1D" "Other"

Use this classification and the selected wvariants
barplotAlleleFreqs(vclkeep,], category.labels = byLoc[keep])

ptena 1 1 3
ptena 2 1 4
ptena 3 2 5
ptena 4 2 2
control 2 8
0.00 0.25 0.50 0.75 1.00 4 8

o g

< S

. no variant Other . frameshift indel < 9 g

n

6.4.1 Other modifications

plotAlignments and plotFreqHeatmap both return ggplot objects, which can be adjusted via theme (). For example,
to decrease the space between the legend and the plot:

p <- plotAlignments(gol, top.n = 3)

Warning: Ignoring unknown aesthetics: height

p + theme(legend.margin = ggplot2::unit(0, "cm"))

Warning: “legend.margin’ must be specified using “margin() . For the old
behavior use legend.spacing

CrispRVariants User Guide 35

Reference -

S EERET DERIRENT RV EENI BN e
—38:38D-——————————————————————T.CT-A.CCA
o
oo I < T e e el - PR I
T T T T
-11

5 10

© 241 (4 common alleles)

7 Using CrispRVariants plotting functions independently

The CrispRVariants plotting functions are intended to be used within a typical CrispRVariants pipeline, where the correct
arguments are extracted from a CrisprSet object. However, with some data formatting, it is also possible to use these
functions with standard R objects.

An example adapting CrispRVariants::plotVariants to display pairwise alignments can be found in the code
accompanying the CrispRVariants paper: https://github.com/markrobinsonuzh /CrispRvariants_manuscript

7.1 Plot the reference sequence

Processing large data with CrispRVariants requires some time. It can be useful to first plot the reference sequence to
check that the intended target location is specified. Here we use the reference sequence from the gol data set included in
CrispRVariants. Any Biostrings::DNAString can be used. Note that CrispRVariants::plotAlignments accepts elliptical
arguments in its signature, so non-signature arguments must be supplied by name. The code below shows the minimum
arguments required for running CrispRVariants::plotAlignments.

Get a reference sequence
library("CrispRVariants")
data("gol_clutchl")

ref <- gol$ref

#Then to make the plot:
plotAlignments(ref, alns = NULL, target.loc = 22, ins.sites = data.frame())
Warning: Ignoring unknown aesthetics: height

Reference -

https://github.com/markrobinsonuzh/CrispRvariants_manuscript

CrispRVariants User Guide 36

8 Note about handling of large deletions

BWA reports deletions above a threshold length as “chimeric” reads, with separate entries in the bam file for each mapped
segment. By default, CrispRVariants only counts chimeric reads where one mapped endpoint is near the cut site.
This setting was chosen as we observed long chimeric deletions in both on- and off-target CRISPR amplicon sequencing
experiments in several independent data sets. The mapped endpoints were more likely to be in the vicinity of the cut site
in on-target experiments. The off-target experiments did not have the other mutant alleles we expect to see if the long
deletions are genuine CRISPR-induced variants. Some of the chimeric reads we observed appeared to be primer dimers.
See the supplementary material of the CrispRVariants paper for more details:

Lindsay H, Burger A, Biyong B, Felker A, Hess C, Zaugg J, Chiavacci E, Anders C, Jinek M,
Mosimann C and Robinson MD (2016). "CrispRVariants charts the mutation spectrum of genome
engineering experiments." Nature Biotechnology, 34, pp. 701-702. doi: 10.1038/nbt.3628.

The default chimera setting prioritises avoiding false positives such as primer dimers at the expense of potentially missing
some genuine variants. This can be changed during initialisation by setting the chimera.to.target parameter to a large
value.

library(Biostrings)
library(CrispRVariants)
library(rtracklayer)

This ©is a small, manually generated data set with a variety of different mutations
bam_fname <- system.file("extdata", "cntnap2b_test_data_s.bam",

package = "CrispRVariants")
guide_fname <- system.file("extdata", "cntnap2b_test_data_guide.bed",

package = "CrispRVariants")

guide <- rtracklayer::import(guide_fname)
guide <- guide + 5
reference <- Biostrings::DNAString("TAGGCGAATGAAGTCGGGGTTGCCCAGGTTCTC")

cset <- readsToTarget(bam_fname, guide, reference = reference, verbose = FALSE,

name = "Default")
cset2 <- readsToTarget(bam_fname, guide, reference = reference, verbose = FALSE,
chimera.to.target = 100, name = "Including long dels")

default_var_counts <- variantCounts(cset)
print (default_var_counts)

#i# Default

no variant
SNV:4

20:10I

23:3D

21:3D

9:2D

-8:58D

21:26D

23:7D

23:31

21:31

22:201

21:2D 1

print(c("Total number of reads: ", colSums(default_var_counts)))
Default

"Total number of reads: " "19"

P PP RPRPRPRPPRPNDNRPL,O

CrispRVariants User Guide

With chimera.to.target = 100, an additional read rTepresenting a large deletion s
reported in the "Other" category.

var_counts_inc_long_dels <- variantCounts(cset2)

print(var_counts_inc_long_dels)

#it Including long dels

no variant
SNV:4

20:10I

23:3D

21:3D

9:2D

-8:58D

21:26D

23:7D

23:31

21:3I

22:201

21:2D

Other
print(c("Total number of reads: ", colSums(var_counts_inc_long_dels)))
#it Including long dels

"Total number of reads: " "20"

B R R R R R R RR R RBRNDPRO

This alignment can be viewed using “plotChimeras’
ch <- getChimeras(cset2, sample = 1)
plotChimeras(ch, annotations = cset2$target)

CrispRVariants User Guide

Chromosomal location

50866590 -

50866580 -

50866560 -

50866387 -
50866380 -

50866360 -

50866353 ¢

T
—
<

Read location

1
617

38

Chromosome
chr2

	1 Introduction
	2 Quickstart
	3 Case study: Analysis of ptena mutant spectrum in zebrafish
	3.1 Convert AB1-format Sanger sequences to FASTQ
	3.2 Map the FASTQ reads
	3.3 List the BAM files
	3.4 Create the target location and reference sequence
	3.5 Creating a CrisprSet
	3.6 Creating summary plots of variants
	3.7 Calculating the mutation efficiency
	3.8 Get consensus alleles
	3.9 Plot chimeric alignments

	4 Choosing the strand for display
	5 Multiple guides
	6 Changing the appearance of plots
	6.1 Filtering data in plotVariants
	6.2 plotAlignments
	6.3 plotFreqHeatmap
	6.4 barplotAlleleFreqs

	7 Using CrispRVariants plotting functions independently
	7.1 Plot the reference sequence

	8 Note about handling of large deletions

