
Package ‘MEAL’
October 18, 2017

Title Perform methylation analysis

Version 1.6.0

Description Package to integrate methylation and expression data. It can
also perform methylation or expression analysis alone. Several plotting
functionalities are included as well as a new region analysis based on
redundancy analysis. Effect of SNPs on a region can also be estimated.

Depends R (>= 3.2.0), Biobase, MultiDataSet

License Artistic-2.0

biocViews DNAMethylation, Microarray, Software, WholeGenome

LazyData true

Imports GenomicRanges, SNPassoc, limma, DMRcate, snpStats, vegan,
BiocGenerics, minfi, IRanges, S4Vectors, methods, doParallel,
parallel, ggplot2 (>= 2.0.0), sva, permute

Suggests testthat, IlluminaHumanMethylationEPICanno.ilm10b2.hg19,
IlluminaHumanMethylation450kanno.ilmn12.hg19, knitr, minfiData,
MEALData, BiocStyle

VignetteBuilder knitr

RoxygenNote 6.0.1

Encoding UTF-8

NeedsCompilation no

Author Carlos Ruiz-Arenas [aut, cre],
Carles Hernandez-Ferrer [aut],
Juan R. González [aut]

Maintainer Carlos Ruiz-Arenas <carlos.ruiz@isglobal.org>

R topics documented:
AnalysisRegionResults . 2
AnalysisResults . 4
calculateRelevantSNPs . 7
computeRDAR2 . 8
correlationMethExprs . 8
correlationMethSNPs . 10
createRanges . 11
DAPipeline . 11

1

2 AnalysisRegionResults

DAProbe . 13
DARegion . 14
DARegionAnalysis . 15
explainedVariance . 17
exportResults . 18
filterSet . 18
getGeneVals . 19
MEAL . 20
MEAL-defunct . 20
normalSNP . 21
plotBestFeatures . 21
plotEWAS . 22
plotFeature . 23
plotLM . 23
plotQQ . 24
plotRDA . 25
plotRegion . 25
plotRegionR2 . 26
plotVolcano . 26
prepareMethylationSet . 27
preparePhenotype . 28
RDAset . 29
topRDAhits . 30

Index 31

AnalysisRegionResults AnalysisRegionResults instances

Description

AnalysisResults heir with the analyses performed in a range of the whole genome.

Usage

analysisRegionResults(analysisResults, range, rdaRes)

S4 method for signature 'AnalysisRegionResults'
getRange(object)

S4 method for signature 'AnalysisRegionResults'
getRDA(object)

S4 method for signature 'AnalysisRegionResults'
globalPval(object)

S4 method for signature 'AnalysisRegionResults'
globalR2(object)

S4 method for signature 'AnalysisRegionResults'
RDAPval(object)

AnalysisRegionResults 3

S4 method for signature 'AnalysisRegionResults'
regionR2(object)

S4 method for signature 'AnalysisRegionResults'
plotRDA(object, n_feat = 5,
main = "RDA plot")

S4 method for signature 'AnalysisRegionResults'
topRDAhits(object, pval = 0.05)

Arguments

analysisResults

AnalysisResults

range GenomicRanges

rdaRes List with RDA results
object MethylationResults

n_feat Numeric with the number of features to be highlighted.
main Character with the plot title.
pval numeric with the p-value threshold. Only features with a p-values below this

threshold will be shown.

Value

An AnalysisRegionResults

Methods (by generic)

• getRange: Get range where the analyses was performed
• getRDA: Get rda object.
• globalPval: Get global p-value.
• globalR2: Get global R2.
• RDAPval: Get p-value of RDA.
• regionR2: Get R2 of the RDA model
• plotRDA: Plot RDA results
• topRDAhits: Get the top features associated with the RDA

Slots

range GenomicRanges used to perform the analysis.
rda rda object from vegan package with the results of RDA analysis in the range.
regionR2 Numeric with the R2 of the region calculated using a redundancy analysis.
RDAPval Numeric with the p-value of the RDA.
globalR2 Numeric with the global R2.
globalPval Numeric with the probability of finding a region with the same number of probes with

a bigger R2.

Examples

showClass("AnalysisRegionResults")

4 AnalysisResults

AnalysisResults AnalysisResults instances

Description

Container with the results of per probe and per region analyses.

Usage

analysisResults(set, model, regionResults, probeResults, num_feat = 50,
num_vars = ncol(pData(set)))

S4 method for signature 'AnalysisResults'
blocks(object)

S4 method for signature 'AnalysisResults'
bumps(object)

S4 method for signature 'AnalysisResults'
covariableNames(object)

S4 method for signature 'AnalysisResults'
dmrCate(object)

S4 method for signature 'AnalysisResults'
feats(object)

S4 method for signature 'AnalysisResults'
featvals(object)

S4 method for signature 'AnalysisResults'
getGeneVals(object, gene)

S4 method for signature 'AnalysisResults'
getMs(object, threshold = 1e-04)

S4 method for signature 'AnalysisResults'
model(object)

S4 method for signature 'AnalysisResults'
modelVariables(object)

S4 method for signature 'AnalysisResults'
phenoData(object)

S4 replacement method for signature 'AnalysisResults,ANY'
phenoData(object) <- value

S4 method for signature 'AnalysisResults'
pData(object)

AnalysisResults 5

S4 replacement method for signature 'AnalysisResults,ANY'
pData(object) <- value

S4 method for signature 'AnalysisResults'
probeResults(object, drop = TRUE)

S4 method for signature 'AnalysisResults'
regionResults(object)

S4 method for signature 'AnalysisResults'
sampleNames(object)

S4 method for signature 'AnalysisResults'
variableNames(object)

S4 method for signature 'AnalysisResults'
exportResults(object, dir = "./", prefix = NULL,
vars = modelVariables(object))

S4 method for signature 'AnalysisResults'
plotEWAS(object,
variable = modelVariables(object)[1], range = NULL,
main = paste("Manhattan plot of ", variable))

S4 method for signature 'AnalysisResults'
plotQQ(object,
variable = modelVariables(object)[1], main = paste("QQplot of", variable,
"analysis"))

S4 method for signature 'AnalysisResults'
plotRegion(object,
variable = modelVariables(object)[[1]], range = NULL,
main = paste("Region plot of ", variable))

S4 method for signature 'AnalysisResults'
plotVolcano(object,
variable = modelVariables(object)[1], mindiff = NULL,
main = paste("Volcano plot of", variable, "results"))

Arguments

set MethylationSet or ExpressionSet used to perform the analysis

model Model matrix used to produce the calculations

regionResults List with the region results

probeResults List with the probe results

num_feat Numeric with the minimum number of feature values to be included.

num_vars Numeric with the number of columns of the pData table that should be consid-
ered as variables.

object AnalysisResults

gene Character with the name of the gene

6 AnalysisResults

threshold Numeric with the threshold to avoid 0s and 1s.

value AnnotatedDataFrame or data.frame with the phenotype

drop Logical. If TRUE, a data.frame is returned when the list of results contains one
element,

dir Character with the path to export.

prefix Character with a prefix to be added to all file names.

vars Character vector with the names of the variables to be exported. Note: names
should be that of the model.

variable Character with the variable name used to obtain the probe results. Note: model
name should be used. Original variable name might not be valid.

range GenomicRange whose probes will be highlighted

main Character with the plot title.

mindiff Numeric with the threshold to consider a difference in methylation or expression
significant.

Value

AnalysisResults

Methods (by generic)

• blocks: Get BlockFinder analysis results

• bumps: Get Bumphunter analysis results

• covariableNames: Get covariable names

• dmrCate: Get dmrCate analysis results

• feats: Get features names

• featvals: Get features values matrix

• getGeneVals: Get probe results of a gene

• getMs: Get Ms values

• model: Get model used to perform the analysis

• modelVariables: Get names of the variables in the model matrix

• phenoData: Get phenotypes data (AnnotatedDataFrame)

• phenoData<-: Set phenotypes data (AnnotatedDataFrame)

• pData: Get phenotypes data (data.frame)

• pData<-: Set phenotypes data (data.frame)

• probeResults: Get per probe analysis results

• regionResults: Get all per region analysis results

• sampleNames: Get sample names

• variableNames: Get variable names

• exportResults: Exports results data.frames to csv files.

• plotEWAS: Plot a Manhattan plot with the probe results

• plotQQ: QQ plot of probe analysis

• plotRegion: Plot of the region

• plotVolcano: Make a Volcano plot with the probe results

calculateRelevantSNPs 7

Slots

originalclass Character with the class of the object used to perform the analysis
features Matrix with the values of the most significant features.
phenotypes AnnotatedDataFrame with the phenotypes.
model Matrix with the model used in the analysis
sampleNames Character vector with the names of the samples
variableNames Character vector with the names of the variables used in the analysis. Names are

equal to those find in phenotypes.
covariableNames Character vector with the names of the covariables used in the analysis. Names

are equal to those find in phenotypes.
results List of data.frames with the results of per probe analysis. Names are those of the model.
DMRcate List of data.frames with the results of DMRcate. Names are those of the model.
Bumphunter List of data.frames with the results of Bumphunter. Names are those of the model.
BlockFinder List of data.frames with the results of BlockFinder. Names are those of the model.

Examples

showClass("AnalysisResults")

calculateRelevantSNPs Calculate the SNPs correlated to cpgs

Description

This function estimates the correlation between the snps and the cpgs. For each pair cpg-SNP the
p-value is returned.

Usage

calculateRelevantSNPs(set, snps, num_cores = 1)

Arguments

set MethylationSet

snps SnpSet

num_cores Numeric with the number of cores to be used.

Value

Data.frame with the pvalues for pairs SNPs-cpgs. SNPs are in the rows and cpgs in the columns.

Examples

Not run:
betamatrix: matrix of beta values
phenodf: data.frame with the phenotypes
snpsobject: SnpSet
set <- prepareMethylationSet(matrix = betamatrix, phenotypes = phenodf)
relevantSNPs <- calculateRelevantSNPs(set, snpsobject)

End(Not run)

8 correlationMethExprs

computeRDAR2 Compute signification of RDA test

Description

Compare R2 obtained in our region of interest with the global R^2 and the R^2 of regions with the
same number of probes.

Usage

computeRDAR2(fullMat, varsmodel, covarsmodel = NULL, featNum, R2,
nperm = 1e+06 - 1)

Arguments

fullMat Matrix with the whole genome expression or methylation values

varsmodel Matrix with the model

covarsmodel Matrix with the covariables model

featNum Numeric with the number of features of the RDA model

R2 Numeric with the R2 of the RDA model

nperm Numeric with the number of permutations.

Value

Numeric vector with the probability of finding a region with the same number of probes with a
bigger R2 and the global R2.

correlationMethExprs Computes the correlation between methylation and expression

Description

Estimates the correlation between methylation and expression. When there are known variables that
affect methylation and/or expression, their effect can be substracted using a linear model and then
the residuals are used.

Usage

correlationMethExprs(multiset, meth_set_name = NULL, exprs_set_name = NULL,
vars_meth = NULL, vars_exprs = NULL, vars_meth_types = rep(NA,
length(vars_meth)), vars_exprs_types = rep(NA, length(vars_exprs)),
sel_cpgs, flank = 250000, num_cores = 1, verbose = TRUE)

correlationMethExprs 9

Arguments

multiset MultiDataSet containing a methylation and an expression slots.

meth_set_name Character vector with the name of the MultiDataSet’s slot containing methyla-
tion data.

exprs_set_name Character vector with the name of the MultiDataSet’s slot containing expres-
sion data.

vars_meth Character vector with the names of the variables that will be used to obtain the
methylation residuals. By default, none is used and residuals are not computed.

vars_exprs Character vector with the names of the variables that will be used to obtain the
expression residuals. By default, none is used and residuals are not computed.

vars_meth_types

Character vector with the types of the methylation variables. By default, vari-
ables type won’t be changed.

vars_exprs_types

Character vector with the types of the expression variables. By default, variables
type won’t be changed.

sel_cpgs Character vector with the name of the CpGs used in the analysis. If empty, all
the CpGs of the methylation set will be used.

flank Numeric with the number of pair bases used to define the cpg-expression probe
pairs.

num_cores Numeric with the number of cores to be used.

verbose Logical value. If TRUE, it writes out some messages indicating progress. If
FALSE nothing should be printed.

Details

For each cpg, a range is defined by the position of the cpg plus the flank parameter (upstream and
downstream). Only those expression probes that are entirely in this range will be selected. For these
reason, it is required that the ExpressionSet contains a featureData with the chromosome and the
starting and ending positions of the probes.

Value

Data.frame with the results of the linear regression:

• cpg: Name of the cpg

• exprs: Name of the expression probe

• beta: coefficient of the methylation change

• se: standard error of the beta

• P.Value: p-value of the beta coefficient

• adj.P.Val: q-value computed using B&H

10 correlationMethSNPs

correlationMethSNPs Computes the correlation between methylation and SNPs

Description

Estimates the correlation between methylation and expression. When there are known variables that
affect methylation and/or expression, their effect can be substracted using a linear model and then
the residuals are used.

Usage

correlationMethSNPs(multiset, meth_set_name = NULL, snps_set_name = NULL,
range, variable_names, covariable_names = NULL, snps_cutoff = 0.01,
verbose = TRUE)

Arguments

multiset MultiDataSet containing a methylation and an expression slots.
meth_set_name Character vector with the name of the MultiDataSet’s slot containing methyla-

tion data.
snps_set_name Character vector with the name of the MultiDataSet’s slot containing SNPs

data.
range GenomicRanges with the range used in the analñysis
variable_names Character vector with the names of the variables that will be used to obtain the

methylation residuals. By default, none is used and residuals are not computed.
covariable_names

Character vector with the names of the variables that will be used to adjust the
model.

snps_cutoff Numerical with the threshold to consider a p-value from a SNP-cpg correlation
significant.

verbose Logical value. If TRUE, it writes out some messages indicating progress. If
FALSE nothing should be printed.

Details

For each cpg, a range is defined by the position of the cpg plus the flank parameter (upstream and
downstream). Only those expression probes that are entirely in this range will be selected. For these
reason, it is required that the ExpressionSet contains a featureData with the chromosome and the
starting and ending positions of the probes.

Value

List with the results:

• cpg: Name of the cpg
• exprs: Name of the expression probe
• beta: coefficient of the methylation change
• se: standard error of the beta
• P.Value: p-value of the beta coefficient
• adj.P.Val: q-value computed using B&H

createRanges 11

createRanges Create GenomicRanges from data.frame

Description

Convert a data.frame with chromosomes in the first column, starting positions in the second one
and ending position in the third one to GenomicRanges. Names of the data.frame are preserved in
the output GenomicRanges.

Usage

createRanges(ranges)

Arguments

ranges Data.frame or matrix

Value

GenomicRanges

Examples

dfranges <- data.frame(chr = c("chr1", "chr2", "chr1"), start = c(1290, 1250, 4758),
end = c(64389, 632409, 16430), stringsAsFactors = FALSE)
names(dfranges) <- c("range1", "range2", "range3")
ranges <- createRanges(dfranges)
ranges

DAPipeline Perform differential methylation analysis

Description

Wrapper for analysing differential methylation and expression at region and probe level.

Usage

DAPipeline(set, variable_names, variable_types = rep(NA,
length(variable_names)), covariable_names = NULL,
covariable_types = rep(NA, length(covariable_names)), equation = NULL,
num_var = NULL, labels = NULL, sva = FALSE,
region_methods = c("bumphunter", "DMRcate"), shrinkVar = FALSE,
probe_method = "ls", max_iterations = 100, num_feat = 50,
num_cores = 1, verbose = FALSE, ...)

12 DAPipeline

Arguments

set MethylationSet or ExpressionSet

variable_names Character vector with the names of the variables that will be returned as result.

variable_types Character vector with the types of the variables. As default, variables type won’t
be changed.

covariable_names

Character vector with the names of the variables that will be used to adjust the
model.

covariable_types

Character vector with the types of the covariables. As default, variables type
won’t be changed.

equation Character containing the formula to be used to create the model.

num_var Numeric with the number of variables in the matrix for which the analysis will
be performed. Compulsory if equation is not null.

labels Character vector with the labels of the variables.

sva Logical indicating if Surrogate Variable Analysis should be applied.

region_methods Character vector with the methods used in DARegion. If "none", region analysis
is not performed.

shrinkVar Logical indicating if shrinkage of variance should be applied in probe analysis.

probe_method Character with the type of linear regression applied in probe analysis ("ls" or
"robust")

max_iterations Numeric with the maximum of iterations in the robust regression.

num_feat Numeric with the minimum number of cpg beta values to be included in the
results.

num_cores Numeric with the number of cores to be used.

verbose Logical value. If TRUE, it writes out some messages indicating progress. If
FALSE nothing should be printed.

... Further arguments passsed to DARegion function.

Details

This function is the main wrapper of the package. First, it simplifies the the set to only contain the
common samples between phenotype and features. In addition, it allows to change the class of the
variables and to apply genomic models (more information on preparePhenotype). Afterwards,
analysis per probe and per region are done merging the results in an AnalysisResults object.

Default linear model will contain a sum of the variables and covariables. If interactions are desired,
a costum formula can be specified. In that case, variables and covariables must also be specified
in order to assure the proper work of the resulting AnalysisResult. In addition, the number of
variables of the model for which the calculation will be done must be specified.

Value

MethylationResult object

See Also

preparePhenotype

DAProbe 13

Examples

if (require(minfiData)){
set <- prepareMethylationSet(matrix = getBeta(MsetEx)[1:10,],
pheno = data.frame(pData(MsetEx)))
res <- DAPipeline(set, variable_names = "Sample_Group", probe_method = "ls")
res

}

DAProbe Perform per probe analysis

Description

Compute statistics (t estimate and p-value) for methylation or expression data using linear or robust
linear regression.

Usage

DAProbe(set, model, coefficient = 2, shrinkVar = FALSE, method = "robust",
max_iterations = 100)

Arguments

set MethylationSet, matrix of beta values (methylation), matrix of expression val-
ues or ExpressionSet.

model Matrix with the model

coefficient Numeric with the index of the model matrix used to perform the analysis. If a
vector is supplied, a list will be returned.

shrinkVar Logical indicating if shrinkange of variance should be performed.

method String indicating the method used in the regression ("ls" or "robust")

max_iterations Numeric indicating the maximum number of iterations done in the robust method.

Value

Data.frame or list of data.frames containing intercept and slope values. If the set is a Methylation-
Set, probe’s position, chromosome and the nearest gene are also returned.

Examples

if (require(minfiData)){
mvalues <- getM(MsetEx)[1:100,]
model <- model.matrix(~ Sample_Group, data = pData(MsetEx))
res <- DAProbe(mvalues, model, method = "ls")
head(res)

}

14 DARegion

DARegion Detect regions differentially methylated

Description

This function is a wrapper of two known region differentially methylated detection methods: Bum-
phunter and DMRcate. blockFinder implementation present in minfi package is also available.

Usage

DARegion(set, model, methods = c("blockFinder", "bumphunter", "DMRcate"),
coefficient = 2, num_permutations = 0, bumphunter_cutoff = 0.05,
bumps_max = 30000, num_cores = 1, verbose = FALSE, lambda = 1000,
C = 2, ...)

Arguments

set MethylationSet.

model Model matrix representing a linear model.

methods Character vector with the names of the methods used to estimate the regions.
Valid names are: "blockFinder", "bumphunter" and "DMRcate".

coefficient Numeric with the index of the model matrix used to perform the analysis.
num_permutations

Numeric with the number of permutations used to calculate p-values in bumphunter
and blockFinder

bumphunter_cutoff

Numeric with the threshold to consider a probe significant. If one number is
supplied, the lower limit is minus the upper one. If two values are given, they
will be upper and lower limits.

bumps_max Numeric with the maximum number of bumps allowed.

num_cores Numeric with the number of cores used to perform the permutation.

verbose Logical value. If TRUE, it writes out some messages indicating progress. If
FALSE nothing should be printed.

lambda Parameter of the gaussian kernel of DMRcate

C Parameter of the scaling factor for bandwidth of DMRcate

... Further arguments passsed to bumphunter function.

Details

DARegion performs a methylation region analysis using bumphunter and DMRcate. Bumphunter
allows the modification of several parameters that should be properly used.

Cutoff will determine the number of bumps that will be detected. The smaller the cutoff, the higher
the number of positions above the limits, so there will be more regions and they will be greater.
Bumphunter can pick a cutoff using the null distribution, i.e. permutating the samples. There is
no standard cutoff and it will depend on the features of the experiment. Permutations are used to
estimate p-values and, if needed, can be used to pick a cutoff. The advised number of permutation
is 1000. The number of permutations will define the maximum number of bumps that will be
considered for analysing. The more bumps, the longer permutation time. As before, there is not an

DARegionAnalysis 15

accepted limit but minfi tutorial recommends not to exceed 30000 bumps. Finally, if supported, it
is very advisable to use parallelization to perform the permutations.

Due to minfi design, BlockFinder can only be run using own minfi annotation. This annotation is
based on hg19 and Illumina 450k chipset. Cpg sites not named like in this annotation package will
not be included. As a result, the use of BlockFinder is not recommended.

DMRcate uses a first step where linear regression is performed in order to estimate coefficients of
the variable of interest. This first step is equal to the calculation performed in DAProbe, but using
in this situation linear regression and not robust linear regression.

DARegion supports multiple variable analyses. If coefficient is a vector, a list of lists will be re-
turned. Each member will be named after the name of the column of the model matrix.

Value

List with the main results of the three methods. If a method is not chosen, NA is returned in this
position.

See Also

bumphunter, blockFinder, dmrcate

Examples

if (require(minfiData)){
set <- prepareMethylationSet(minfi::getBeta(MsetEx)[1:10,], pheno = data.frame(pData(MsetEx)))
model <- model.matrix(~Sample_Group, data = pData(MsetEx))
res <- DARegion(set, model)
res
}

DARegionAnalysis Analyse methylation or expression in a specific range

Description

Methylation analysis in a genomic range.

Usage

DARegionAnalysis(set, range, omicset = "methylation", variable_names,
variable_types = rep(NA, length(variable_names)), covariable_names = NULL,
covariable_types = rep(NA, length(covariable_names)), equation = NULL,
num_var = NULL, labels = NULL, sva = FALSE,
region_methods = c("blockFinder", "bumphunter", "DMRcate"),
shrinkVar = FALSE, probe_method = "robust", max_iterations = 100,
num_cores = 1, verbose = FALSE, nperm = 1000, ...)

16 DARegionAnalysis

Arguments

set MethylationSet, ExpressionSet or MultiDataSet.

range GenomicRanges with the desired range.

omicset In a MultiDataSet allows to choose between methylation and expression (valid
values are: "methylation" or "expression").

variable_names Character vector with the names of the variables that will be returned as result.

variable_types Character vector with the types of the variables. By default, variables type won’t
be changed.

covariable_names

Character vector with the names of the variables that will be used to adjust the
model.

covariable_types

Character vector with the types of the covariables. By default, variables type
won’t be changed.

equation String containing the formula to be used to create the model.

num_var Numeric with the number of variables in the matrix for which the analysis will
be performed. Compulsory if equation is not null.

labels Character vector with the labels of the variables.

sva Logical indicating if Surrogate Variable Analysis should be applied.

region_methods Character vector with the methods used in DARegion. If "none", region analysis
is not performed.

shrinkVar Logical indicating if shrinkage of variance should be applied in probe analysis.

probe_method Character with the type of linear regression applied in probe analysis ("ls" or
"robust")

max_iterations Numeric with the maximum of iterations in the robust regression.

num_cores Numeric with the number of cores to be used.

verbose Logical value. If TRUE, it writes out some messages indicating progress. If
FALSE nothing should be printed.

nperm Numeric with the number of permutations used to compute RDA p-values.

... Further arguments passsed to DAPipeline function.

Details

Set is filtered to the range specified. Probe analysis and DMR detection are run using the filtering
set. Finally, RDA test of the region is performed, returning the R2 between the variables and the
beta matrix and a p-value of this R2.

Value

AnalysisRegionResult object

See Also

preparePhenotype, DAPipeline

explainedVariance 17

Examples

if (require(minfiData)){
set <- prepareMethylationSet(getBeta(MsetEx)[1:1000,],
pheno = data.frame(pData(MsetEx)))
range <- GenomicRanges::GRanges(seqnames=Rle("chrX"),
ranges = IRanges(30000, end = 123000000))
res <- DARegionAnalysis(set, range = range, variable_names = "Sample_Group",
probe_method = "ls")
res

}

explainedVariance Calculate R2 for different variables

Description

Using a data.frame as input, calculates the R2 between a dependent variable and some independent
variables. Base adjusting by covariates can also be used.

Usage

explainedVariance(data, num_mainvar = 1, num_covariates = 0,
variable_label = NULL)

Arguments

data Data.frame containing the dependent variable in the first column.

num_mainvar Numerical with the number of variables that should be grouped. They should be
at the beggining.

num_covariates Numerical with the number of variables that should be considered as covariates.
Covariates variables must be at the end.

variable_label Character with the name of the main variable in the results.

Details

explainedVariance computes R2 via linear models. The first column is considered to be the de-
pendent variable. Therefore, a lineal model will be constructed for each of the remaining variables.
In case that covariates were included, they will be included in all the models and, in addition, a
model containing only the covariates will be returned.

Some variables can be grouped in the models to assess their effect together.

Value

Numeric vector with the R2 explained by each of the variables.

Examples

data(mtcars)
R2 <- explainedVariance(mtcars)
R2

18 filterSet

exportResults Exports results data.frames to csv files.

Description

Exports results to csv files. If more than one variable is present, subfolders with the name of the
variable are created. For each variable, four files will be generated: probeResults.csv, dmrCateRe-
sults.csv, bumphunterResults.csv and blockFinderResults.csv

Usage

exportResults(object, dir = "./", prefix = NULL,
vars = modelVariables(object))

Arguments

object MethylationResults or MethylationRegionResults

dir Character with the path to export.

prefix Character with a prefix to be added to all file names.

vars Character vector with the names of the variables to be exported. Note: names
should be that of the model.

Value

Files are saved into the given folder.

Examples

if (require(minfiData)){
set <- prepareMethylationSet(getBeta(MsetEx)[1:10,], pheno = data.frame(pData(MsetEx)))
methyOneVar <- DAPipeline(set, variable_names = "sex", probe_method = "ls")
exportResults(methyOneVar)
}

filterSet Filter a MethylationSet, an ExpressionSet or a SnpSet

Description

Filter a MethylationSet, an ExpressionSet or a SnpSet

Usage

filterSet(set, range)

Arguments

set MethylationSet, ExpressionSet or a SnpSet

range GenomicRanges with the desired range.

getGeneVals 19

Value

MethylationSet, ExpressionSet or a SnpSet with only the features of the range.

Examples

if (require(minfiData) & require(GenomicRanges)){
range <- GRanges(seqnames=Rle("chrY"),
ranges = IRanges(3000000, end=12300000))
set <- prepareMethylationSet(MsetEx[1:100,], data.frame(pData(MsetEx)))
set
filteredset <- filterSet(set, range)
filteredset
}

getGeneVals Get all probes related to gene

Description

Given a MethylationResults and a gene name returns the results of the analysis of all the probes
of the gene.

Usage

getGeneVals(object, gene)

Arguments

object MethylationResults

gene Character with the name of the gene

Value

List of data.frames with the results of the analysis of the probes belonging to the gene

Examples

if (require(minfiData)){
set <- prepareMethylationSet(getBeta(MsetEx)[1:10,], pheno = data.frame(pData(MsetEx)))
methyOneVar <- DAPipeline(set, variable_names = "sex", probe_method = "ls")
getGeneVals(methyOneVar, "TSPY4")
}

20 MEAL-defunct

MEAL MEAL (Methylation and Expression AnaLizer): Package for analysing
methylation and expression data

Description

MEAL has three different categories of important functions: processing, analysing and plotting.

processing

Functions used to create MEAL objects and to modify them. Main functions are prepareMethylation-
Set and preparePhenotype

analysing

Functions used to perform the analysis of methylation data. DAProbe performs per probe analysis
and DARegion performs per region analysis. There are two wrappers: DAPipeline and DARe-
gionAnalysis that performs per probe and per region analysis. The first one analyses the whole
methylation sites and the second one only a given region. Finally, correlationMethExprs computes
the correlation between methylation and expression probes

plotting

Functions used to plot the results of the analysis. Some are interesting for whole methylome analysis
(e.g. plotEWAS) and others for analysis of one genomic region (e.g. plotRDA)

MEAL-defunct Defunct functions

Description

These functions are defunct and no longer available.

Details

Defunct functions are: multiCorrMethExprs

normalSNP 21

normalSNP Normalize SNPs values

Description

SNPs values, introduced as numerical, are normalized to be used in lineal models.

Usage

normalSNP(snps)

Arguments

snps Numerical vector or matrix representing the SNPs in the form: 0 homozygote
recessive, 1 heterozygote, 2 homozygote dominant.

Value

Numerical vector or matrix with the snps normalized.

Examples

snps <- c(1, 0, 0, 1, 0, 0, 2, 1, 2)
normSNPs <- normalSNP(snps)
normSNPs

plotBestFeatures Plot best n cpgs

Description

Wrapper of plotCPG that plots the top n features.

Usage

plotBestFeatures(set, n = 10, variables = variableNames(set)[1])

Arguments

set AnalysisResults, AnalysisRegionResults, ExpressionSet or MethylationSet

n Numeric with the number of features to be plotted.

variables Character vector with the names of the variables to be used in the splitting.

Value

Plots are created on the current graphics device.

See Also

plotFeature

22 plotEWAS

Examples

if (require(minfiData)){
set <- prepareMethylationSet(getBeta(MsetEx)[1:10,],
pheno = data.frame(pData(MsetEx)))
plotBestFeatures(set, 2, variables = "Sample_Group")
}

plotEWAS Plot a Manhattan plot with the probe results

Description

Plot log p-value for each chromosome positions. Highlighting cpgs inside a range is allowed.

Usage

plotEWAS(object, variable = modelVariables(object)[[1]], range = NULL,
main = paste("Manhattan plot of ", variable))

Arguments

object AnalysisResults or AnalysisRegionResults

variable Character with the variable name used to obtain the probe results. Note: model
name should be used. Original variable name might not be valid.

range GenomicRange whose cpgs will be highlighted

main Character with the plot title.

Value

A plot is generated on the current graphics device.

Examples

if (require(minfiData)){
betas <- getBeta(MsetEx)[floor(seq(1, nrow(MsetEx), 10000)),]
set <- prepareMethylationSet(betas, pheno = data.frame(pData(MsetEx)))
methyOneVar <- DAPipeline(set, variable_names = "sex", probe_method = "ls")
plotEWAS(methyOneVar)
}

plotFeature 23

plotFeature Plot values of a feature

Description

Plot values of a feature splitted by one or two variables.

Usage

plotFeature(set, feat, variables = variableNames(set)[1])

Arguments

set AnalysisResults, AnalysisRegionResults, ExpressionSet or MethylationSet
feat Numeric with the index of the feature or character with its name.
variables Character vector with the names of the variables to be used in the splitting.

Two variables is the maximum allowed. Note: default values are only valid for
MethylationResults objects.

Value

A plot is generated on the current graphics device.

Examples

if (require(minfiData)){
set <- prepareMethylationSet(getBeta(MsetEx)[1:1000,],
pheno = data.frame(pData(MsetEx)))
plotFeature(set, 1, variables = "Sample_Group")
}

plotLM Plot a vector of R2

Description

Plot a vector of R2 where the first value is the main variable and the last one, if named covariates
is treated as covariates.

Usage

plotLM(Rsquares, title = paste("Variance Explained in", feat_name),
feat_name = NULL, variable_name = names(Rsquares)[1], max_columns = 6)

Arguments

Rsquares Numerical vector of R2
title Character with the plot title
feat_name Name of the feature used in default title.
variable_name Character for the first column name
max_columns Numerical with the maximum number of columns to be plotted.

24 plotQQ

Value

A plot in the graphical device

Examples

data(mtcars)
R2 <- explainedVariance(mtcars, variable_label = "cyl") ## variable equals to cyl column
plotLM(R2)

plotQQ QQ plot of probe analysis

Description

Generate a QQ plot using probe results.

Usage

plotQQ(object, variable = modelVariables(object)[[1]],
main = paste("QQplot of", variable, "analysis"))

Arguments

object AnalysisResults or AnalysisRegionResults

variable Character with the variable name used to obtain the probe results. Note: model
name should be used. Original variable name might not be valid.

main Character with the plot title.

Value

A plot is generated on the current graphics device.

Examples

if (require(minfiData)){
betas <- getBeta(MsetEx)[floor(seq(1, nrow(MsetEx), 10000)),]
set <- prepareMethylationSet(betas, pheno = data.frame(pData(MsetEx)))
methyOneVar <- DAPipeline(set, variable_names = "sex", probe_method = "ls")
plotQQ(methyOneVar)
}

plotRDA 25

plotRDA Plot RDA results

Description

Plot RDA results

Usage

plotRDA(object, n_feat = 5, main = "RDA plot")

Arguments

object AnalysisRegionResults

n_feat Numeric with the number of cpgs to be highlighted.
main Character with the plot title.

Value

A plot is generated on the current graphics device.

Examples

if (require(minfiData) & require(GenomicRanges)){
set <- prepareMethylationSet(getBeta(MsetEx), pheno = data.frame(pData(MsetEx)))
range <- GenomicRanges::GRanges(seqnames=Rle("chrY"),
ranges = IRanges(3000000, end=12300000))
rangeNoSNPs <- DARegionAnalysis(set, variable_names = "sex", range = range)
plotRDA(rangeNoSNPs)
}

plotRegion Plot of the region

Description

Plot of the beta values againts their position. Data is taken from probe analysis. Cpgs with a p-value
smaller than 0.05 (without adjusting) are blue and points with a p-value greater than 0.05 are red.

Usage

plotRegion(object, variable = modelVariables(object)[[1]], range = NULL,
main = paste("Region plot of ", variable))

Arguments

object AnalysisResults or AnalysisRegionResults
variable Character with the variable name used to obtain the probe results. Note: model

name should be used. Original variable name might not be valid.
range GenomicRange whose cpgs will be shown (only for AnalysisResults objects)
main Character with the plot title.

26 plotVolcano

Value

A plot is generated on the current graphics device.

Examples

if (require(minfiData) & require(GenomicRanges)){
set <- prepareMethylationSet(getBeta(MsetEx), pheno = data.frame(pData(MsetEx)))
range <- GenomicRanges::GRanges(seqnames=Rle("chrY"),
ranges = IRanges(3000000, end=12300000))
rangeNoSNPs <- DARegionAnalysis(set, variable_names = "sex", range = range)
plotRegion(rangeNoSNPs)
}

plotRegionR2 Plot R2 region values

Description

Plot R2 region values

Usage

plotRegionR2(object, feat, ...)

Arguments

object MethylationRegionResults

feat Numeric with the index of the feature or character with its name.

... Further arguments passed to plotLM

Value

A plot is generated on the current graphics device.

plotVolcano Make a Volcano plot with the probe results

Description

Plot log p-value versus the change in expression/methylation.

Usage

plotVolcano(object, variable = modelVariables(object)[1], mindiff = NULL,
main = paste("Volcano plot of", variable, "results"))

prepareMethylationSet 27

Arguments

object MethylationResults or MethylationRegionResults

variable Character with the variable name used to obtain the probe results. Note: model
name should be used. Original variable name might not be valid.

mindiff Numeric with the minimum change in methylation or expression needed to be
significant

main Character with the plot title.

Value

A plot is generated on the current graphics device.

Examples

if (require(minfiData)){
betas <- getBeta(MsetEx)[floor(seq(1, nrow(MsetEx), 10000)),]
set <- prepareMethylationSet(betas, pheno = data.frame(pData(MsetEx)))
methyOneVar <- DAPipeline(set, variable_names = "sex", probe_method = "ls")
plotVolcano(methyOneVar)
}

prepareMethylationSet Generating a MethylationSet

Description

This function creates a MethylationSet using from a matrix of beta values and a data.frame of
phenotypes.

Usage

prepareMethylationSet(matrix, phenotypes,
annotation = "IlluminaHumanMethylation450kanno.ilmn12.hg19",
chromosome = "chr", position = "pos", genes = "UCSC_RefGene_Name",
group = "UCSC_RefGene_Group", filterNA_threshold = 0.05,
verbose = FALSE)

Arguments

matrix Data.frame or a matrix with samples on the columns and cpgs on the rows. A
minfi object can be used to.

phenotypes Data.frame or vector with the phenotypic features of the samples. Samples will
be in the rows and variables in the columns. If matrix is a minfi object, pheno-
types can be taken from it.

annotation Character with the name of the annotation package or data.frame or Annotation-
DataFrame with the annotation.

chromosome Character with the column containing chromosome name in the annotation data.

position chromosome Character with the column containing position coordinate in the
annotation data.

28 preparePhenotype

genes Character with the column containing gene names related to the methylation site
in the annotation data. (Optional)

group Character with the column containing the position of the probe related to the
gene named in gene column. (Optional)

filterNA_threshold

Numeric with the maximum percentage of NA allowed for each of the probes.
If 1, there will be no filtering, if 0 all probes containing at least a NA will be
filtered.

verbose Logical value. If TRUE, it writes out some messages indicating progress. If
FALSE nothing should be printed.

Details

prepareMethylationSet is a useful wrapper to create MethylationSet. Rigth now, prepareMethy-
lationSet supports two entry points: a minfi object and a matrix of betas.

Phenotypes are compulsory and can be supplied as data.frame or AnnotatedDataFrame.

By default, annotation is taken from minfi package and IlluminaHumanMethylation450kanno.ilmn12.hg19
package is used, being the default arguments adapted to use this annotation. To use this annota-
tion, IlluminaHumanMethylation450kanno.ilmn12.hg19 must be installed and methylation sites
must be named like in Illumina 450k chip. Use of this annotation ensures correct results in all the
analysis.

If custom annotation is desired, there are two compulsory features: chromosomes and positions.
Chromosomes should be supplied in the character form (e.g. chr1). Two additional features will
be used during the presentation of results but not during the analyses: genes and group. Genes are
the gene names of the genes around the cpg site and group defines the groups of the genes. Both
columns will appear in the results but they are not used through the workflow. It should be noticed
that BlockFinder only supports minfi annotation, so it is not advised to be used with custom
annotation.

Value

MethylationSet with phenotypes and annotation.

Examples

if (require(minfiData)){
betas <- getBeta(MsetEx)[1:1000,]
pheno <- pData(MsetEx)
set <- prepareMethylationSet(betas, pheno)
}

preparePhenotype Process a table of phenotypes

Description

Given a data.frame containing phenotypic variables, select the desired columns and transform them
to the desired types.

RDAset 29

Usage

preparePhenotype(phenotypes, variable_names, variable_types = rep(NA,
length(variable_names)))

Arguments

phenotypes Data.frame with the phenotypic features

variable_names Vector with the names or the positions of the desired variables.

variable_types Vector with the types of the variables.

Details

preparePhenotype supports five types of variables. Categorical and continuous correspond to
factor and numerical types in R. The other three are genomic models as defined in SNPassoc:
dominant, recessive and additive. In order to use these types, only two alleles can be present and
genotypes should be specified in the form a/b.

If transformation of variables is not needed, the variable_types can be passed as a vector of NA.

Value

Data.frame with the columns selected and with the types desired.

Examples

pheno <- data.frame(a = sample(letters[1:2], 5, replace = TRUE), b = runif(5),
c = sample(c("a/a","a/b", "b/b"), 5, replace = TRUE))
pheno <- preparePhenotype(pheno, variable_names = c("a", "c"),
variable_types = c("categorical", "dominant"))
pheno

RDAset Calculate RDA for a set

Description

Perform RDA calculation for a AnalysisRegionResults. Feature values will be considered the
matrix X and phenotypes the matrix Y. Adjusting for covariates is done using a model matrix passed
in covarsmodel.

Usage

RDAset(set, varsmodel = NULL, covarsmodel = NULL)

Arguments

set MethylationSet, ExpressionSet or matrix

varsmodel Matrix with the model

covarsmodel Matrix with the covariables model

30 topRDAhits

Value

Object of class rda

See Also

rda

Examples

if (require(minfiData)){
set <- prepareMethylationSet(getBeta(MsetEx)[1:50,], pheno = data.frame(pData(MsetEx)))
model <- model.matrix(~set$age)
rda <- RDAset(set, model)
rda
}

topRDAhits Get the top features associated with the RDA

Description

Get a list of the features significantly associated to the first two RDA components

Usage

topRDAhits(object, pval = 0.05)

Arguments

object AnalysisRegionResults

pval numeric with the p-value threshold. Only features with a p-values below this
threshold will be shown.

Value

data.frame with the features, the component, the correlation and the p-value

Examples

if (require(minfiData) & require(GenomicRanges)){
set <- prepareMethylationSet(getBeta(MsetEx), pheno = data.frame(pData(MsetEx)))
range <- GenomicRanges::GRanges(seqnames=Rle("chrY"),
ranges = IRanges(3000000, end=12300000))
rangeNoSNPs <- DARegionAnalysis(set, variable_names = "sex", range = range)
topRDAhits(rangeNoSNPs)
}

Index

AnalysisRegionResults, 2
analysisRegionResults

(AnalysisRegionResults), 2
AnalysisRegionResults-class

(AnalysisRegionResults), 2
AnalysisRegionResults-methods

(AnalysisRegionResults), 2
AnalysisResults, 4
analysisResults (AnalysisResults), 4
AnalysisResults-class

(AnalysisResults), 4
AnalysisResults-methods

(AnalysisResults), 4

blockFinder, 15
blocks (AnalysisResults), 4
blocks,AnalysisResults-method

(AnalysisResults), 4
bumphunter, 15
bumps (AnalysisResults), 4
bumps,AnalysisResults-method

(AnalysisResults), 4

calculateRelevantSNPs, 7
computeRDAR2, 8
correlationMethExprs, 8, 20
correlationMethSNPs, 10
covariableNames (AnalysisResults), 4
covariableNames,AnalysisResults-method

(AnalysisResults), 4
createRanges, 11

DAPipeline, 11, 16, 20
DAProbe, 13, 20
DARegion, 14, 20
DARegionAnalysis, 15, 20
dmrCate (AnalysisResults), 4
dmrcate, 15
dmrCate,AnalysisResults-method

(AnalysisResults), 4

explainedVariance, 17
exportResults, 18
exportResults,AnalysisResults-method

(AnalysisResults), 4

feats (AnalysisResults), 4
feats,AnalysisResults-method

(AnalysisResults), 4
featvals (AnalysisResults), 4
featvals,AnalysisResults-method

(AnalysisResults), 4
filterSet, 18

getGeneVals, 19
getGeneVals,AnalysisResults-method

(AnalysisResults), 4
getMs,AnalysisResults-method

(AnalysisResults), 4
getRange (AnalysisRegionResults), 2
getRange,AnalysisRegionResults-method

(AnalysisRegionResults), 2
getRDA (AnalysisRegionResults), 2
getRDA,AnalysisRegionResults-method

(AnalysisRegionResults), 2
globalPval (AnalysisRegionResults), 2
globalPval,AnalysisRegionResults-method

(AnalysisRegionResults), 2
globalR2 (AnalysisRegionResults), 2
globalR2,AnalysisRegionResults-method

(AnalysisRegionResults), 2

MEAL, 20
MEAL-defunct, 20
MEAL-package (MEAL), 20
model (AnalysisResults), 4
model,AnalysisResults-method

(AnalysisResults), 4
modelVariables (AnalysisResults), 4
modelVariables,AnalysisResults-method

(AnalysisResults), 4

normalSNP, 21

pData,AnalysisResults-method
(AnalysisResults), 4

pData<-,AnalysisResults,ANY-method
(AnalysisResults), 4

phenoData,AnalysisResults-method
(AnalysisResults), 4

31

32 INDEX

phenoData<-,AnalysisResults,ANY-method
(AnalysisResults), 4

plotBestFeatures, 21
plotEWAS, 20, 22
plotEWAS,AnalysisResults-method

(AnalysisResults), 4
plotFeature, 21, 23
plotLM, 23
plotQQ, 24
plotQQ,AnalysisResults-method

(AnalysisResults), 4
plotRDA, 20, 25
plotRDA,AnalysisRegionResults-method

(AnalysisRegionResults), 2
plotRegion, 25
plotRegion,AnalysisResults-method

(AnalysisResults), 4
plotRegionR2, 26
plotVolcano, 26
plotVolcano,AnalysisResults-method

(AnalysisResults), 4
prepareMethylationSet, 20, 27
preparePhenotype, 12, 16, 20, 28
probeResults (AnalysisResults), 4
probeResults,AnalysisResults-method

(AnalysisResults), 4

rda, 30
RDAPval (AnalysisRegionResults), 2
RDAPval,AnalysisRegionResults-method

(AnalysisRegionResults), 2
RDAset, 29
regionR2 (AnalysisRegionResults), 2
regionR2,AnalysisRegionResults-method

(AnalysisRegionResults), 2
regionResults (AnalysisResults), 4
regionResults,AnalysisResults-method

(AnalysisResults), 4

sampleNames,AnalysisResults-method
(AnalysisResults), 4

topRDAhits, 30
topRDAhits,AnalysisRegionResults-method

(AnalysisRegionResults), 2

variableNames (AnalysisResults), 4
variableNames,AnalysisResults-method

(AnalysisResults), 4

	AnalysisRegionResults
	AnalysisResults
	calculateRelevantSNPs
	computeRDAR2
	correlationMethExprs
	correlationMethSNPs
	createRanges
	DAPipeline
	DAProbe
	DARegion
	DARegionAnalysis
	explainedVariance
	exportResults
	filterSet
	getGeneVals
	MEAL
	MEAL-defunct
	normalSNP
	plotBestFeatures
	plotEWAS
	plotFeature
	plotLM
	plotQQ
	plotRDA
	plotRegion
	plotRegionR2
	plotVolcano
	prepareMethylationSet
	preparePhenotype
	RDAset
	topRDAhits
	Index

