
QuaternaryProd
Carl Tony Fakhry, Ping Chen and Kourosh Zarringhalam

2016-10-17

A signed causal graph is a directed graph where the edges are signed and the signs indicate the direction
of effect of the source node on the target node (the signs are either + or -). QuaternaryProd is a package
for computing the Quaternary Dot Product Scoring Statistic (or simply the Quaternary Statistic) for signed
causal graphs. The Quaternary Dot Product Scoring Statistic is a generalization of the Ternary Dot Product
Scoring Statistic (i.e Chindelevitch’s Scoring Statistic [1]) which allows for ambiguities to arise in a signed
causal graph. Ambiguities arise when a source node can affect a target node in two different ways or if the
direction of causality is unknown. We will first provide some background, and then we will apply the statistic
to Stringdb which is a publicly available biological network.

Introduction

The Quaternary Dot Product Scoring Statistic [2] is a goodness of fit test for examining how well the
predictions of a signed and directed causal graph predict on newly realized experimental data. Given a source
node s in a signed causal graph, let qp, qm and qr denote the number of target nodes which are increased,
decreased and regulated by the source node respectively. Similarly, let qz denote the set of target nodes in the
causal network which do not share a relation with s i.e which are not affected by s. Regulated relations occur
when a source node regulates a target node without knowing the direction of causality or if an ambiguity in
direction of causality occurs. An ambiguity can occur if a source node, according to a given network, shares
both increase and decrease relations with the same target node. Next, Suppose we run some experiments
on entities which are target nodes in the network. Let np, nm and nz denote the set of values which are
increased, decreased and remain unchanged in the experimental values respectively. For the source node s,
we can tabulate the predictions from the network vs. the experimental values:

Observed + Observed − Observed 0 Total
Predicted + npp npm npz qp

Predicted − nmp nmm nmz qm

Predicted r nrp nrm nrz qr

Predicted 0 nzp nzm nzz qz

Total np nm nz T

Table 1: Tabulation of predictions from network edges vs. observations from experimental results.

npp denotes the number of target nodes which s is predicted to increase by the network and were indeed
increased in experimental values; npm the number of target nodes which s is predicted to increase and were
decreased in experimental values; npz is the number of target nodes which s is predicted to increase and
were unchanged in experimental values. Similar interpretation follows for all other entries of the table. The
probability of a table follows the Quaternary Dot Product distribution which is given by:

P (Table) =

(
qp

npp,npm,npz

)(
qm

nmp,nmm,nmz

)(
qz

nzp,nzm,nzz

)(
qr

nrp,nrm,nrz

)(
T

np,nm,nz

) . (1)

Note, since the predictions by the network and the experimental values are fixed, then the table has 6 degrees
of freedom npp, nmm, nrp, nrm, nmp and npm. The score S to measure the goodness of fit is given by:

1

S(Table) = npp + nmm + nrp + nrm − (nmp + npm) (2)

which is the sum of the good predictions (i.e npp, nmm, nrp and nrm) minus the bad predictions (i.e nmp and
npm). To compute the probability of a score, we sum the probabilites of all tables with score S as follows:

P (S) =
∑

P (Table)=S

P (Table). (3)

Functionality

QuaternaryProd provides different functions for computing the probability of a score, probability mass
function, p-value of a score and the domain of the Quaternary Dot Product Scoring Statistic. The probability
mass function can be computed if given the margins of the table.

library(QuaternaryProd)

Compute the probability mass function
pmf <- QP_Pmf(q_p = 20, q_m = 20, q_z = 20, q_r = 0, n_p = 20, n_m = 20, n_z = 20)

Plot the mass function
plot(names(pmf), pmf, col="blue", xlab = "scores", ylab = "probabilities")
lines(names(pmf), pmf, col = "blue")

−40 −20 0 20 40

0.
00

0.
02

0.
04

0.
06

scores

pr
ob

ab
ili

tie
s

The package contains optimized functions for computing the p-value of a score. To compute the p-value of
score we can use the following:

Get the p-value of score 5
pval <- QP_Pvalue(score = 5, q_p = 20, q_m = 20, q_z = 20, q_r = 0,

n_p = 20, n_m = 20, n_z = 20)
pval

2

[1] 0.1948157

Compue the p-value only if it is statistically significant otherwise
return -1
pval <- QP_SigPvalue(score = 5, q_p = 20, q_m = 20, q_z = 20, q_r = 0,

n_p = 20, n_m = 20, n_z = 20)
pval

[1] -1

If the user is only interested in obtaining statistically significant p-values, then QP_SigPvalue is optimized
for this purpose. In either case, the user is advised to compute the p-value of a score using the previous two
functions which will be faster than computing the entire probability mass function and then computing the
p-value. Finally, it is possible to also compute the probabilities of scores individually using QP_Probability
and the support of the distribution using QP_Support. Since this package is written to the benefit of
bioinformaticians, we will provide an example on how to apply this statistic to a publicly available network.
One bioinformatic application is to test how well protein-protein causal networks can predict the results in
gene expression data. In the last section of this Vignette, we present an example of computing this statistic
over the Stringdb network and given gene expression data.

Edges from STRINGdb

You can use the STRINGdb package to interact with the String database. The current release of
STRINGdb only allows querying of neighbors in the network without the direction of action. For the
purposes of the Quaternary Dot Product Scoring Statistic, it is necessary to have the direction of action. It is
possible to obtain the signed network by downloading it directly from String-db network source, selecting the
species of interest, and downloading the protein actions network. Here, we present an example for working
with the freely available Homo Sapien protein-protein interaction network from STRINGdb. The network is
in tab seperated format which is straightforward to work with. It is possible to get a larger version of network
with more relations from STRINGdb by signing a license agreement with the authors of STRINGdb.

Parse File

In this section, we provide an example of one possible way to parse the Homo Sapien protein actions
network and prepare it to be used with our package. First, we need to upload the network which is attached
to QuaternaryProd for convenience.

library(QuaternaryProd)
library(readr)
library(org.Hs.eg.db)
library(dplyr)
library(stringr)
library(fdrtool)

Get the full file name containing the STRINGdb relations
ff <- system.file("extdata", "9606.protein.actions.v10.txt.gz", package="QuaternaryProd")
all_rels <- read_tsv(gzfile(ff), col_names = TRUE)

Next, we filter out the important columns and important relations. We remove all rows which do not have a
relation activation, inhibition and expression. Moreover, we also consider reverse causality for any relation
which has a direction value equal to 0.

3

www.string-db.org
http://string-db.org/newstring_cgi/show_download_page.pl

Set new names for columns
names(all_rels) <- c("srcuid", "trguid", "mode", "action", "direction","score")
Rels <- all_rels[, c("srcuid", "trguid", "mode", "direction")]

Get all rows with causal relations
Rels <- Rels[Rels$mode %in% c("activation", "inhibition","expression"),]

Get causal relations where direction is not specified, and consider reversed
direction of causality as a valid causal relation
Bidirectional <- Rels[Rels$direction == 0 , c("trguid", "srcuid", "mode", "direction")]
names(Bidirectional) <- c("srcuid", "trguid", "mode", "direction")
Rels <- unique(bind_rows(Rels, Bidirectional))
Rels$direction <- NULL

Rename activation as increases, inhibition as decreases, expression
as regulates
Rels$mode <- sub("activation", "increases", Rels$mode)
Rels$mode <- sub("inhibition", "decreases", Rels$mode)
Rels$mode <- sub("expression", "regulates", Rels$mode)
Rels <- unique(Rels)

Get a subset of the network: Skip this step if you want the p-values
of the scores corresponding to the source nodes computed over the
entire network.
Rels <- Rels[sample(1:nrow(Rels), 40000, replace=FALSE),]

Third, we extract the protein entities from the network, and we map them to their respective genes. Note,
the entities could have been possibly a drug or compound, but we are working with this protein interactions
network for the purpose of providing a nontrivial example.

Get all unique protein ensemble ids in the causal network
allEns <- unique(c(Rels$srcuid, Rels$trguid))

Map ensemble protein ids to entrez gene ids
map <- org.Hs.egENSEMBLPROT2EG
id <- unlist(mget(sub("9606.","",allEns), map, ifnotfound=NA))
id[is.na(id)] <- "-1"
uid <- paste("9606.", names(id), sep="")

Function to map entrez ids to gene symbols
map <- org.Hs.egSYMBOL
symbol <- unlist(mget(id, map, ifnotfound=NA))
symbol[is.na(symbol)] <- "-1"

Create data frame of STRINGdb protein Id, entrez id and gene symbol and type of entity
Ents <- data_frame(uid, id, symbol, type="protein")
Ents <- Ents[Ents$uid %in% allEns,]

Remove ensemble ids in entities with duplicated entrez id
Ents <- Ents[!duplicated(Ents$id),]

Add mRNAs to entities
uid <- paste("mRNA_", Ents$uid, sep = "")

4

mRNAs <- data_frame(uid=uid, id=Ents$id, symbol=Ents$symbol, type="mRNA")
Ents <- bind_rows(Ents, mRNAs)

Finally, we filter unique relations in the network, and remove source proteins which do not have more than
10 children in the network.

Get all unique relations
Rels$trguid <- paste("mRNA_", Rels$trguid, sep="")
Rels <- Rels[Rels$srcuid %in% Ents$uid & Rels$trguid %in% Ents$uid,]
Rels <- unique(Rels)

Leave source proteins which contain at least 10 edges
sufficientRels <- group_by(Rels, srcuid) %>% summarise(count=n())
sufficientRels <- sufficientRels %>% filter(count > 10)
Rels <- Rels %>% filter(srcuid %in% sufficientRels$srcuid)

Compute Pvalues Over the Network

Given new gene expression data, we can compute the scores and p-values for all source nodes in the network.
BioQCREtoNet is a specialized function for this purpose.

Gene expression data
evidence1 <- system.file("extdata", "e2f3_sig.txt", package = "QuaternaryProd")
evidence1 <- read.table(evidence1, sep = "\t", header = TRUE, stringsAsFactors = FALSE)
evidence2 <- system.file("extdata", "myc_sig.txt", package = "QuaternaryProd")
evidence2 <- read.table(evidence2, sep = "\t", header = TRUE, stringsAsFactors = FALSE)
evidence3 <- system.file("extdata", "ras_sig.txt", package = "QuaternaryProd")
evidence3 <- read.table(evidence3, sep = "\t", header = TRUE, stringsAsFactors = FALSE)

Remove duplicated entrez ids in evidence and rename column names appropriately
names(evidence1) <- c("entrez", "pvalue", "fc")
evidence1 <- evidence1[!duplicated(evidence1$entrez),]

names(evidence2) <- c("entrez", "pvalue", "fc")
evidence2 <- evidence2[!duplicated(evidence2$entrez),]

names(evidence3) <- c("entrez", "pvalue", "fc")
evidence3 <- evidence3[!duplicated(evidence3$entrez),]

Run Quaternary CRE for entire Knowledge base on new evidence
which computes the statistic for each of the source proteins

CRE_results <- BioQCREtoNet(Rels, evidence1, Ents, is.Logfc = TRUE)

[1] "216 rows from evidence removed due to entrez ids being unrepsented in entities!"

Get FDR corrected p-values
CRE_results$pvalue <- fdrtool(CRE_results$pvalue, "pvalue", FALSE,

FALSE, FALSE, "fndr")$q

Warning in fdrtool(CRE_results$pvalue, "pvalue", FALSE, FALSE, FALSE,
"fndr"): There may be too few input test statistics for reliable FDR
calculations!

5

head(CRE_results[order(CRE_results$pvalue), c("uid","name","pvalue")])

uid name pvalue
1 9606.ENSP00000284523 WNT3A 0.2577952
2 9606.ENSP00000250971 INS 0.2577952
3 9606.ENSP00000360266 JUN 0.6561228
4 9606.ENSP00000418447 PPP2CA 0.7538642
5 9606.ENSP00000272233 RHOB 0.7556311
6 9606.ENSP00000392262 PPP5D1 0.8138929

BioQCREtoNet returns a data frame containing all the source nodes of the causal network, all of which had
their respective score p-value computed. The source nodes are ordered in increasing order (Note: details on
the columns of the data frame returned can be found in the help page for BioQCREtoNet).

References

[1] Chindelevitch et al. (2012). Assessing statistical significance in causal graphs. BMC Bioinformatics,
Volume 3, Issue 1, 2012, Page 35.

[2] Carl Tony Fakhry, Parul Choudhary, Alex Gutteridge, Ben Sidders, Ping Chen, Daniel Ziemek, and
Kourosh Zarringhalam. Interpreting transcriptional changes using causal graphs: new methods and their
practical utility on public networks. BMC Bioinformatics, 17:318, 2016. ISSN 1471-2105. doi: 10.1186/s12859-
016-1181-8.

[3] Franceschini, A (2013). STRING v9.1: protein-protein interaction networks, with increased coverage and
integration. In:‘Nucleic Acids Res. 2013 Jan;41(Database issue):D808-15. doi: 10.1093/nar/gks1094. Epub
2012 Nov 29’.

6

	Introduction
	Functionality
	Edges from STRINGdb
	Parse File
	Compute Pvalues Over the Network

	References

