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Abstract. Genotype-level cancer progression models describe the temporal
ordering in which genomic alterations such as somatic mutations and copy
number alterations tend to fixate and accumulate during cancer formation and
progression. These graphical models can describe trends of natural selection
across a population of independent tumour samples (cross-sectional data), or
reconstruct the clonal evolution in a single patient’s tumour (multi-region or
single-cell data). In terms of application, such models can be used to better
elucidate genotype-phenotype relation, predict cancer hallmarks and outcome of
personalised treatment as well as suggest novel targets for therapy design.

TRONCO (TRanslational ONCOlogy) is an R package which collects algorithms
to infer progression models from Bernoulli 0/1 profiles of genomic alterations
across a tumor sample. Such profiles are usually visualized as a binary input matrix
where each row represents a patient’s sample (e.g., the result of a sequenced
tumor biopsy), and each column an event relevant to the progression (a certain
type of somatic mutation, a focal or higher-level chromosomal copy number
alteration, etc.); a 0/1 value models the absence/presence of that alteration in the
sample. TRONCO provides utilities to readily import these data and in particular
the import from boolean matrices and MAF or GISTIC files are supported. The
package provides various functions to editing, visualize and subset such data, as
well as functions to query the cBioPortal for cancer genomics.

In the current version, TRONCO provides parallel implementations of
CAPRESE [PLoS ONE 9(12): e115570] and CAPRI [Bioinformatics,
doi:10.1093/bioinformatics/btv296] algorithms to infer progression models ar-
ranged as trees or general direct acyclic graphs. Bootstrap procedures to assess
the non-prametric and statistical confidence of the inferred models are also pro-
vided. The package comes with example data available, which include the dataset
of Atypical Chronic Myeloid Leukemia samples by Piazza et al., Nat. Genet., 45
(2013).

Requirements: You need to have installed the R package rgraphviz, see Bioconductor.org.

In this vigntte, we will present a case study for the usage of the TRONCO package based on the work presented
in the main CAPRI paper.
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Events selection

We will start by loading the TRONCO package in R along with an example ”dataset” that comes within the
package.

> library(TRONCO)

> data(aCML)

> hide.progress.bar <<- TRUE

We then use the function show to get a short summary of the aCML dataset that has just been loaded.

> show(aCML)

Description: CAPRI - Bionformatics aCML data.

Dataset: n=64, m=31, |G|=23.

Events (types): Ins/Del, Missense point, Nonsense Ins/Del, Nonsense point.

Colors (plot): darkgoldenrod1, forestgreen, cornflowerblue, coral.

Events (10 shown):

gene 4 : Ins/Del TET2

gene 5 : Ins/Del EZH2

gene 6 : Ins/Del CBL

gene 7 : Ins/Del ASXL1

gene 29 : Missense point SETBP1

gene 30 : Missense point NRAS

gene 31 : Missense point KRAS

gene 32 : Missense point TET2

gene 33 : Missense point EZH2

gene 34 : Missense point CBL

Genotypes (10 shown):

gene 4 gene 5 gene 6 gene 7 gene 29 gene 30 gene 31 gene 32 gene 33 gene 34

patient 1 0 0 0 0 1 0 0 0 0 0

patient 2 0 0 0 0 1 0 0 0 0 1

patient 3 0 0 0 0 1 1 0 0 0 0

patient 4 0 0 0 0 1 0 0 0 0 1

patient 5 0 0 0 0 1 0 0 0 0 0

patient 6 0 0 0 0 1 0 0 0 0 0

Using the function as.events, we can have a look at the events in the dataset.

> as.events(aCML)

type event

gene 4 "Ins/Del" "TET2"

gene 5 "Ins/Del" "EZH2"

gene 6 "Ins/Del" "CBL"

gene 7 "Ins/Del" "ASXL1"

gene 29 "Missense point" "SETBP1"

gene 30 "Missense point" "NRAS"

gene 31 "Missense point" "KRAS"

gene 32 "Missense point" "TET2"

gene 33 "Missense point" "EZH2"

gene 34 "Missense point" "CBL"

gene 36 "Missense point" "IDH2"

gene 39 "Missense point" "SUZ12"

gene 40 "Missense point" "SF3B1"

gene 44 "Missense point" "JARID2"

gene 47 "Missense point" "EED"

gene 48 "Missense point" "DNMT3A"

gene 49 "Missense point" "CEBPA"
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gene 50 "Missense point" "EPHB3"

gene 51 "Missense point" "ETNK1"

gene 52 "Missense point" "GATA2"

gene 53 "Missense point" "IRAK4"

gene 54 "Missense point" "MTA2"

gene 55 "Missense point" "CSF3R"

gene 56 "Missense point" "KIT"

gene 66 "Nonsense Ins/Del" "WT1"

gene 69 "Nonsense Ins/Del" "RUNX1"

gene 77 "Nonsense Ins/Del" "CEBPA"

gene 88 "Nonsense point" "TET2"

gene 89 "Nonsense point" "EZH2"

gene 91 "Nonsense point" "ASXL1"

gene 111 "Nonsense point" "CSF3R"

These events account for alterations in the following genes.

> as.genes(aCML)

[1] "TET2" "EZH2" "CBL" "ASXL1" "SETBP1" "NRAS" "KRAS" "IDH2" "SUZ12"

[10] "SF3B1" "JARID2" "EED" "DNMT3A" "CEBPA" "EPHB3" "ETNK1" "GATA2" "IRAK4"

[19] "MTA2" "CSF3R" "KIT" "WT1" "RUNX1"

Now we take a look at the alterations of only the gene SETBP1 across the samples.

> as.gene(aCML, genes='SETBP1')

Missense point SETBP1

patient 1 1

patient 2 1

patient 3 1

patient 4 1

patient 5 1

patient 6 1

patient 7 1

patient 8 1

patient 9 1

patient 10 1

patient 11 1

patient 12 1

patient 13 1

patient 14 1

patient 15 0

patient 16 0

patient 17 0

patient 18 0

patient 19 0

patient 20 0

patient 21 0

patient 22 0

patient 23 0

patient 24 0

patient 25 0

patient 26 0

patient 27 0

patient 28 0

patient 29 0

patient 30 0

patient 31 0
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patient 32 0

patient 33 0

patient 34 0

patient 35 0

patient 36 0

patient 37 0

patient 38 0

patient 39 0

patient 40 0

patient 41 0

patient 42 0

patient 43 0

patient 44 0

patient 45 0

patient 46 0

patient 47 0

patient 48 0

patient 49 0

patient 50 0

patient 51 0

patient 52 0

patient 53 0

patient 54 0

patient 55 0

patient 56 0

patient 57 0

patient 58 0

patient 59 0

patient 60 0

patient 61 0

patient 62 0

patient 63 0

patient 64 0

We consider a subset of all the genes in the dataset to be involved in patters based on the support we found
in the literature. See the main CAPRI paper as a reference.

> gene.hypotheses = c('KRAS', 'NRAS', 'IDH1', 'IDH2', 'TET2', 'SF3B1', 'ASXL1')

Regardless from which types of mutations we include, we select only the genes which appear alterated at least
in the 5% of the patients. Thus, we first transform the dataset into ”Alteration” (i.e., by collapsing all the
event types for the same gene), and then we consider only the these events from the original dataset.

> alterations = events.selection(as.alterations(aCML), filter.freq = .05)

*** Aggregating events of type(s) {Ins/Del, Missense point, Nonsense Ins/Del, Nonsense point}

in a unique event with label "Alteration".

Dropping event types Ins/Del, Missense point, Nonsense Ins/Del, Nonsense point for 23 genes.

*** Binding events for 2 datasets.

*** Events selection: #events=23, #types=1 Filters freq|in|out = {TRUE, FALSE, FALSE}

Minimum event frequency: 0.05 (3 alterations out of 64 samples).

Selected 7 events.

Selected 7 events, returning.

We now show a plot of the selected genes. Note that this plot has no title as by default the function
events.selection does not add any.

> dummy = oncoprint(alterations,font.row=12,cellheight=20,cellwidth=4)
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*** Oncoprint for ""

with attributes: stage=FALSE, hits=TRUE

Sorting samples ordering to enhance exclusivity patterns.

25% TET2

22% ASXL1

22% SETBP1

16% EZH2

11% CSF3R

8% NRAS

6% CBL

hits hits
4

0

none

Alteration

64 samples
7 events
7 genes
0 patterns

Figure 1: Oncoprint output

Adding Hypotheses

We now create the dataset to be used for the inference of the progression model. We consider the original
dataset and from it we select all the genes whose mutations are occurring at least the 5% of the times together
with any gene involved in an hypothesis. To do so, we use the parameter filter.in.names as shown below.

> hypo = events.selection(aCML, filter.in.names=c(as.genes(alterations), gene.hypotheses))

*** Events selection: #events=31, #types=4 Filters freq|in|out = {FALSE, TRUE, FALSE}

[filter.in] Genes hold: TET2, EZH2, CBL, ASXL1, SETBP1 ... [10/14 found].

Selected 17 events, returning.

> hypo = annotate.description(hypo, 'CAPRI - Bionformatics aCML data (selected events)')

We show a new oncoprint of this latest dataset where we annotate the genes in gene.hypotheses in order
to identify them. The sample names are also shown.

> dummy = oncoprint(hypo, gene.annot = list(priors= gene.hypotheses), sample.id = T,

+ font.row=12, font.column=5, cellheight=20, cellwidth=4)

*** Oncoprint for "CAPRI - Bionformatics aCML data (selected events)"

with attributes: stage=FALSE, hits=TRUE

Sorting samples ordering to enhance exclusivity patterns.

Annotating genes with RColorBrewer color palette Set1 .
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CAPRI − Bionformatics aCML data (selected events)

patient 9
patient 12
patient 13
patient 3
patient 5
patient 2
patient 4
patient 7
patient 8
patient 14
patient 6
patient 1
patient 10
patient 11
patient 29
patient 24
patient 27
patient 21
patient 45
patient 48
patient 32
patient 39
patient 62
patient 17
patient 23
patient 20
patient 38
patient 57
patient 26
patient 40
patient 60
patient 34
patient 56
patient 41
patient 30
patient 42
patient 25
patient 55
patient 15
patient 35
patient 61
patient 22
patient 16
patient 18
patient 19
patient 28
patient 31
patient 33
patient 36
patient 37
patient 43
patient 44
patient 46
patient 47
patient 49
patient 50
patient 51
patient 52
patient 53
patient 54
patient 58
patient 59
patient 63
patient 64

22% SETBP1

14% ASXL1

11% EZH2

11% TET2

8% NRAS

8% TET2

8% CSF3R

8% ASXL1

6% TET2

5% CBL

5% IDH2

5% CSF3R

3% EZH2

2% EZH2

2% CBL

2% KRAS

2% SF3B1

hits

group

hits
4

0

group
none
priorsnone

Ins/Del

Missense point

Nonsense point

64 samples
17 events
10 genes
0 patterns

Figure 2: Oncoprint output

We now also add the hypotheses that are described in CAPRI’s manuscript. Hypothesis of hard exclusivity
(XOR) for NRAS/KRAS events (Mutation). This hypothesis is tested against all the events in the dataset.

> hypo = hypothesis.add(hypo, 'NRAS xor KRAS', XOR('NRAS', 'KRAS'))

We then try to include also a soft exclusivity (OR) pattern but, since its ”signature” is the same of the hard
one just included, it will not be included. The code below is expected to rise an error.

> hypo = hypothesis.add(hypo, 'NRAS or KRAS', OR('NRAS', 'KRAS'))

For the sake of better highlighting the perfect (hard) exclusivity among NRAS/KRAS mutations, one can
have a further look at their alterations.

> dummy = oncoprint(events.selection(hypo, filter.in.names = c('KRAS', 'NRAS')),
+ font.row=12,cellheight=20, cellwidth=4)

*** Events selection: #events=18, #types=4 Filters freq|in|out = {FALSE, TRUE, FALSE}

[filter.in] Genes hold: KRAS, NRAS ... [2/2 found].

Selected 2 events, returning.

*** Oncoprint for ""

with attributes: stage=FALSE, hits=TRUE

Sorting samples ordering to enhance exclusivity patterns.
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8% NRAS

2% KRAS

hits hits
1

0

none

Missense point

Figure 3: Oncoprint output

We repeated the same analysis as before for other hypotheses and for the same reasons, we will include only
the hard exclusivity pattern.

> hypo = hypothesis.add(hypo, 'SF3B1 xor ASXL1', XOR('SF3B1', OR('ASXL1')), '*')

> hypo = hypothesis.add(hypo, 'SF3B1 or ASXL1', OR('SF3B1', OR('ASXL1')), '*')

Finally, we now do the same for genes TET2 and IDH2. In this case 3 events for the gene TET2 are present,
that is ”Ins/Del”, ”Missense point” and ”Nonsense point”. For this reason, since we are not specifying any
subset of such events to be considered, all TET2 alterations are used. Since the events present a perfect hard
exclusivity, their patters will be included as a XOR.

> as.events(hypo, genes = 'TET2')

type event

gene 4 "Ins/Del" "TET2"

gene 32 "Missense point" "TET2"

gene 88 "Nonsense point" "TET2"

> hypo = hypothesis.add(hypo, 'TET2 xor IDH2', XOR('TET2', 'IDH2'), '*')
> hypo = hypothesis.add(hypo, 'TET2 or IDH2', OR('TET2', 'IDH2'), '*')

> dummy = oncoprint(events.selection(hypo, filter.in.names = c('TET2', 'IDH2')),
+ font.row=12, cellheight=20,cellwidth=4)

*** Events selection: #events=21, #types=4 Filters freq|in|out = {FALSE, TRUE, FALSE}

[filter.in] Genes hold: TET2, IDH2 ... [2/2 found].

Selected 4 events, returning.

*** Oncoprint for ""

with attributes: stage=FALSE, hits=TRUE

Sorting samples ordering to enhance exclusivity patterns.

11% TET2

8% TET2

6% TET2

5% IDH2

hits hits
2

0
none

Ins/Del

Missense point

Nonsense point

64 samples

Figure 4: Oncoprint output

We now finally add any possible group of homologous events. For any gene having more than one event
associated we also add a soft exclusivity pattern among them.

> hypo = hypothesis.add.homologous(hypo)

*** Adding hypotheses for Homologous Patterns

Genes: TET2, EZH2, CBL, ASXL1, CSF3R

Function: OR
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Cause: *

Effect: *

Hypothesis created for all possible gene patterns.

The final dataset that will be given as input to CAPRI is now finally shown.

> dummy = oncoprint(hypo, gene.annot = list(priors= gene.hypotheses), sample.id = T,

+ font.row=10, font.column=5, cellheight=15, cellwidth=4)

*** Oncoprint for "CAPRI - Bionformatics aCML data (selected events)"

with attributes: stage=FALSE, hits=TRUE

Sorting samples ordering to enhance exclusivity patterns.

Annotating genes with RColorBrewer color palette Set1 .

CAPRI − Bionformatics aCML data (selected events)

patient 29
patient 24
patient 27
patient 21
patient 13
patient 12
patient 62
patient 23
patient 57
patient 26
patient 40
patient 34
patient 41
patient 25
patient 55
patient 48
patient 15
patient 56
patient 9
patient 2
patient 4
patient 7
patient 8
patient 45
patient 32
patient 39
patient 42
patient 22
patient 6
patient 5
patient 14
patient 3
patient 1
patient 10
patient 11
patient 17
patient 20
patient 38
patient 61
patient 30
patient 35
patient 60
patient 16
patient 18
patient 19
patient 28
patient 31
patient 33
patient 36
patient 37
patient 43
patient 44
patient 46
patient 47
patient 49
patient 50
patient 51
patient 52
patient 53
patient 54
patient 58
patient 59
patient 63
patient 64

28% TET2 or IDH2

27% TET2 xor IDH2

25% XOR_TET2

23% SF3B1 xor ASXL1

22% SETBP1

22% XOR_ASXL1

16% XOR_EZH2

14% ASXL1

11% EZH2

11% TET2

11% OR_CSF3R

9% NRAS xor KRAS

8% NRAS

8% TET2

8% CSF3R

8% ASXL1

6% TET2

6% XOR_CBL

5% CBL

5% IDH2

5% CSF3R

3% EZH2

2% EZH2

2% CBL

2% KRAS

2% SF3B1

hits

group

hits
10

0

group
none
priorsnone

Ins/Del

Missense point

Nonsense point

Pattern

64 samples
26 events
10 genes
9 patterns

Figure 5: Oncoprint output

Model reconstruction

We run the inference of the model by CAPRI algorithm with its default parameter: we use both AIC and BIC
as regularizators, Hill-climbing as heuristic search of the solutions and exhaustive bootstrap (nboot replicates
or more for Wilcoxon testing, i.e., more iterations can be performed if samples are rejected), p-value set at
0.05. We set the seed for the sake of reproducibility.

> model = tronco.capri(hypo, boot.seed = 12345, nboot=10)
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*** Checking input events.

*** Inferring a progression model with the following settings.

Dataset size: n = 64, m = 26.

Algorithm: CAPRI with "bic, aic" regularization and "hc" likelihood-fit strategy.

Random seed: 12345.

Bootstrap iterations (Wilcoxon): 10.

exhaustive bootstrap: TRUE.

p-value: 0.05.

minimum bootstrapped scores: 3.

*** Bootstraping selective advantage scores (prima facie).

Evaluating "temporal priority" (Wilcoxon, p-value 0.05)

Evaluating "probability raising" (Wilcoxon, p-value 0.05)

*** Loop detection found loops to break.

Removed 26 edges out of 68 (38%)

*** Performing likelihood-fit with regularization bic.

*** Performing likelihood-fit with regularization aic.

The reconstruction has been successfully completed in 00h:00m:02s

We then plot the model inferred by CAPRI with BIC as a regolarizator and we set some parameters to get
a good plot; the confidence of each edge is shown both in terms of temporal priority and probability raising
(selective advantage scores) and hypergeometric testing (statistical relevance of the dataset of input).

> tronco.plot(model, fontsize = 13, scale.nodes = .6, regularization="bic",

+ confidence = c('tp', 'pr', 'hg'), height.logic = 0.25, legend.cex = .5,

+ pathways = list(priors= gene.hypotheses), label.edge.size=5)

*** Expanding hypotheses syntax as graph nodes:

*** Rendering graphics

Nodes with no incoming/outgoing edges will not be displayed.

Annotating nodes with pathway information.

Annotating pathways with RColorBrewer color palette Set1 .

Adding confidence information: tp, pr, hg

RGraphviz object prepared.

Plotting graph and adding legends.

>
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CAPRI − Bionformatics aCML data (selected events)

●

SETBP1
20% (14)

TET2
8% (5)

EZH2
11% (7)

CBL
4% (3)

TET2
6% (4)

EZH2
2% (1)

CBL
1% (1)

ASXL1
14% (9)

ASXL1
8% (5)

< 0.01
< 0.01
< 0.01

< 0.01
< 0.01
< 0.01

< 0.01
< 0.01
< 0.01

< 0.01
< 0.01
0.08 *

< 0.01
< 0.01
0.06 *

< 0.01
< 0.01
< 0.01

●

●

●

●

Events type

Ins/Del
Missense point
Nonsense point
 

Patterns
Exclusivity (hard)
 

Pathways
priors

●

●

●

●

Edge confidence
Temporal Priority
Probability Raising
Hypergeometric test
p < 0.05
 

Sample size
n = 64, m = 26
|G| = 10, |P| = 9

Regularization
bic
aic

Figure 6: aCML Reconstructed model Pre bootstrap.

Bootstrapping data

Finally, we perform non-parametric bootstrap as a further estimation of the confidence in the inferred results.

> model.boot = tronco.bootstrap(model, nboot=10)

Executing now the bootstrap procedure, this may take a long time...

Expected completion in approx. 00h:00m:03s

*** Using 7 cores via "parallel"

*** Reducing results

Performed non-parametric bootstrap with 10 resampling and 0.05 as pvalue

for the statistical tests.

> tronco.plot(model.boot, fontsize = 13, scale.nodes = .6, regularization="bic",

+ confidence=c('npb'), height.logic = 0.25, legend.cex = .5,

+ pathways = list(priors= gene.hypotheses), label.edge.size=10)
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*** Expanding hypotheses syntax as graph nodes:

*** Rendering graphics

Nodes with no incoming/outgoing edges will not be displayed.

Annotating nodes with pathway information.

Annotating pathways with RColorBrewer color palette Set1 .

Adding confidence information: npb

RGraphviz object prepared.

Plotting graph and adding legends.

>

CAPRI − Bionformatics aCML data (selected events)

●

SETBP1
20% (14)

TET2
8% (5)

EZH2
11% (7)

CBL
4% (3)

TET2
6% (4)

EZH2
2% (1)

CBL
1% (1)

ASXL1
14% (9)

ASXL1
8% (5)

0.1

1

0.40.8

0.4

0.5

●

●

●

●

Events type

Ins/Del
Missense point
Nonsense point
 

Patterns
Exclusivity (hard)
 

Pathways
priors

●

●

●

●

Edge confidence
Non Parametric Bootstrap
p < 0.05
 

Sample size
n = 64, m = 26
|G| = 10, |P| = 9

Regularization
bic
aic

Figure 7: aCML Reconstructed model After bootstrap.
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