
Package Vignette for Genomic Interactions: ChIA-PET
data

ChIA-PET

Chromatin interaction analysis with paired-end tag sequencing (ChIA-PET) is a recent method to study
protein-mediated interactions at a genome-wide scale. Like most techniques for studying chromatin interaction
it is based on chromosome conformation capture technology. Unlike 3C, 4C and 5C, however, it can detect
interactions genome-wide, and includes a ChIP step to purify interactions involving a protein of interest.

The raw data from ChIA-PET is in the form of paired-end reads attached to one of two linker sequences.
Reads with chimeric linkers are removed, and the data is aligned to the reference genome. The ChIA-PET
tool can then be used to find pairs of regions (“anchors”) which have a significant number of reads mapping
between them and therefore represent biologically meaningful chromatin interactions in the sample.

Imports

First we need to load the GenomicInteractions package, and the mm9 reference genome:

library(GenomicInteractions)
library(GenomicRanges)

Loading required package: BiocGenerics

Loading required package: parallel

##
Attaching package: 'BiocGenerics'

The following objects are masked from 'package:parallel':
##
clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
clusterExport, clusterMap, parApply, parCapply, parLapply,
parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from 'package:stats':
##
IQR, mad, xtabs

The following objects are masked from 'package:base':
##
Filter, Find, Map, Position, Reduce, anyDuplicated, append,
as.data.frame, as.vector, cbind, colnames, do.call,
duplicated, eval, evalq, get, grep, grepl, intersect,
is.unsorted, lapply, lengths, mapply, match, mget, order,
paste, pmax, pmax.int, pmin, pmin.int, rank, rbind, rownames,
sapply, setdiff, sort, table, tapply, union, unique, unlist,
unsplit

1

http://en.wikipedia.org/wiki/Chromosome_conformation_capture
http://en.wikipedia.org/wiki/Chromatin_immunoprecipitation
http://genomebiology.com/2010/11/2/R22
http://genomebiology.com/2010/11/2/R22

Loading required package: S4Vectors

Loading required package: stats4

Loading required package: IRanges

Loading required package: GenomeInfoDb

Data

We can then read in our data directly from the output of the ChIA-PET tool. At this stage we can also
provide information about the cell type and a description tag for the experiment. The data is taken from Li
et al., 2012, published in Cell. They have used antibodies against the initiation form of Pol II, which you
would expect to find at active promoters, and we are looking at data from the K562 myelogenous leukemia
cell line. The data should therefore give us an insight into the processes which regulate genes that are being
actively transcribed.

chiapet.data = system.file("extdata/k562.rep1.cluster.pet3+.txt",
package="GenomicInteractions")

k562.rep1 = makeGenomicInteractionsFromFile(chiapet.data,
type="chiapet.tool",
experiment_name="k562",
description="k562 pol2 8wg16")

This loads the data into a GenomicInteractions object, which consists of two linked GenomicRanges objects
containing the anchors in each interaction, as well as the p-value, FDR and the number of reads supporting
each interaction.

GenomicInteractions Objects

The metadata we have added can easily be accesed, and edited:

name(k562.rep1)

[1] "k562"

description(k562.rep1) = "PolII-8wg16 Chia-PET for K562"

As can the data from the ChIA-PET experiment:

head(interactionCounts(k562.rep1))

[1] 3 562 3 3 3 3

head((k562.rep1)$fdr)

[1] 1.25703e-10 0.00000e+00 1.17148e-06 4.86859e-08 2.76777e-08 3.97019e-08

2

http://genomebiology.com/2010/11/2/R22
http://www.sciencedirect.com/science/article/pii/S0092867411015170

hist(-log10(k562.rep1$p.value))

Histogram of −log10(k562.rep1$p.value)

−log10(k562.rep1$p.value)

F
re

qu
en

cy

0 10 20 30 40

0
20

00
60

00
10

00
0

The two linked GRanges objects can be returned, but not altered in-place:

anchorOne(k562.rep1)

GRanges object with 64565 ranges and 0 metadata columns:
seqnames ranges strand
<Rle> <IRanges> <Rle>
[1] chr1 [569922, 571422] *
[2] chr1 [832761, 905482] *
[3] chr1 [839092, 842325] *
[4] chr1 [839393, 841792] *
[5] chr1 [852731, 855234] *
...
[64561] chrX [154432946, 154435728] *
[64562] chrX [154436728, 154439876] *
[64563] chrX [154439789, 154442306] *
[64564] chrX [154459648, 154462031] *
[64565] chrX [154839050, 154843949] *

seqinfo: 25 sequences from an unspecified genome; no seqlengths

anchorTwo(k562.rep1)

GRanges object with 64565 ranges and 0 metadata columns:
seqnames ranges strand

3

<Rle> <IRanges> <Rle>
[1] chrM [8342, 10675] *
[2] chr1 [838470, 920603] *
[3] chr1 [935528, 939051] *
[4] chr1 [955081, 956755] *
[5] chr1 [933685, 937006] *
...
[64561] chrX [154442294, 154446983] *
[64562] chrX [154442540, 154445105] *
[64563] chrX [154448371, 154451728] *
[64564] chrX [154469339, 154471852] *
[64565] chrX [154843728, 154848393] *

seqinfo: 25 sequences from an unspecified genome; no seqlengths

GenomicInteractions objects can easily handle interactions detected between chromosomes, known as
trans-chromosomal interactions, since the anchors can be at any point along the genome. is.trans returns a
logical vector; likewise is.cis is the opposite of this function.

sprintf("Percentage of trans-chromosomal interactions %.2f",
100*sum(is.trans(k562.rep1))/length(k562.rep1))

[1] "Percentage of trans-chromosomal interactions 1.00"

The length of each interaction is not stored as metadata, but we can calculate the distance of each interaction
using either the inner edge, outer edge or midpoints of the anchors. This is undefined for inter-chromosomal
interactions, so NA is returned, so it is important to exclude these interactions from some analyses.

head(calculateDistances(k562.rep1, method="midpoint"))

[1] NA 10414 96580 115324 81362 79097

GenomicRanges objects can be subsetted by either integer or logical vectors like most R objects, and also
BioConductor Rle objects.

k562.rep1[1:10] # first interactions in the dataset

GenomicInteractions object with 10 interactions and 2 metadata columns:
Name: k562
Description: PolII-8wg16 Chia-PET for K562
Sum of interactions: 624
Annotated: no
Interactions:
Anchor One Anchor Two Counts | p.value
[1] chr1:569922..571422 --- chrM:8342..10675 3 | 1.6214e-12
[2] chr1:832761..905482 --- chr1:838470..920603 562 | 0
[3] chr1:839092..842325 --- chr1:935528..939051 3 | 4.21364e-08
[4] chr1:839393..841792 --- chr1:955081..956755 3 | 1.45938e-09
[5] chr1:852731..855234 --- chr1:933685..937006 3 | 7.85539e-10
[6] chr1:855856..858861 --- chr1:935669..937245 3 | 1.16802e-09
[7] chr1:874165..879175 --- chr1:933340..938306 10 | 1.23139e-25

4

[8] chr1:874190..877867 --- chr1:955674..959630 5 | 6.63691e-15
[9] chr1:889676..896594 --- chr1:933897..938982 13 | 4.91311e-36
[10] chr1:898753..907581 --- chr1:931133..939571 19 | 0
fdr
[1] 1.25703e-10
[2] 0
[3] 1.17148e-06
[4] 4.86859e-08
[5] 2.76777e-08
[6] 3.97019e-08
[7] 3.58932e-23
[8] 6.98795e-13
[9] 2.33753e-33
[10] 0
##

seqinfo: 25 sequences from an unspecified genome; no seqlengths

k562.rep1[sample(length(k562.rep1), 100)] # 100 interactions subsample
k562.cis = k562.rep1[is.cis(k562.rep1)]

The length of each interaction is not stored as metadata, but we can calculate the distance of each interaction
using either the inner edge, outer edge or midpoints of the anchors. Since this is undefinable for trans-
chromosomal interactions it is best to first subset only cis interactions before calling calculateDistances,
otherwise NAs will be present in the returned vector.

head(calculateDistances(k562.cis, method="midpoint"))

[1] 10414 96580 115324 81362 79097 59152

k562.short = k562.cis[calculateDistances(k562.cis) < 1e6] # subset shorter interactions
hist(calculateDistances(k562.short))

5

Histogram of calculateDistances(k562.short)

calculateDistances(k562.short)

F
re

qu
en

cy

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

0
10

00
0

30
00

0
50

00
0

We can also subset based on the properties of the linked GRanges objects.

chrom = c("chr17", "chr18")
sub = as.vector(seqnames(anchorOne(k562.rep1)) %in% chrom & seqnames(anchorTwo(k562.rep1)) %in% chrom)
k562.rep1 = k562.rep1[sub]

Annotation

Genomic Interaction data is often used to look at the interactions between different elements in the genome,
which are believed to have different functional roles. Interactions between promoters and their transcription
termination sites, for example, are thought to be a by-product of the transcription process, whereas long-range
interactions with enhancers play a role in gene regulation.

Since GenomicInteractions is based on GenomicRanges, it is very easy to interrogate GenomicInteractions
objects using GenomicRanges data. In the example, we want to annotate interactions that overlap the
promoters, transcription termination sites or the body of any gene. Since this can be a time-consuming and
data-heavy process, this example runs the analysis for only chromosomes 17 & 18.

First we need the list of RefSeq transcripts:

library(GenomicFeatures)

hg19.refseq.db <- makeTxDbFromUCSC(genome="hg19", table="refGene")
refseq.genes = genes(hg19.refseq.db)
refseq.transcripts = transcriptsBy(hg19.refseq.db, by="gene")
non_pseudogene = names(refseq.transcripts) %in% unlist(refseq.genes$gene_id)
refseq.transcripts = refseq.transcripts[non_pseudogene]

Rather than downloading the whole Refseq database, these are provided for chromosomes 17 & 18:

6

data("hg19.refseq.transcripts")
refseq.transcripts = hg19.refseq.transcripts

We can then use functions from GenomicRanges to call promoters and terminators for these transcripts. We
have taken promoter regions to be within 2.5kb of an annotated TSS and terminators to be within 1kb of
the end of an annotated transcript. Since genes can have multiple transcripts, they can also have multiple
promoters/terminators, so these are GRangesList objects, which makes handling these objects slightly more
complicated.

refseq.promoters = promoters(refseq.transcripts, upstream=2500, downstream=2500)
unlist object so "strand" is one vector
refseq.transcripts.ul = unlist(refseq.transcripts)
terminators can be called as promoters with the strand reversed
strand(refseq.transcripts.ul) = ifelse(strand(refseq.transcripts.ul) == "+", "-", "+")
refseq.terminators.ul = promoters(refseq.transcripts.ul, upstream=1000, downstream=1000)
change back to original strand
strand(refseq.terminators.ul) = ifelse(strand(refseq.terminators.ul) == "+", "-", "+")
`relist' maintains the original names and structure of the list
refseq.terminators = relist(refseq.terminators.ul, refseq.transcripts)

These can be used to subset a GenomicInteractions object directly from GRanges using the GenomicRanges
overlaps methods. findOverlaps called on a GenomicInteractions object will return a list containing Hits
objects for both anchors.

We can finds any interactions involving a RefSeq promoter:

subsetByFeatures(k562.rep1, refseq.promoters)

GenomicInteractions object with 2907 interactions and 2 metadata columns:
Name: k562
Description: PolII-8wg16 Chia-PET for K562
Sum of interactions: 58468
Annotated: no
Interactions:
Anchor One Anchor Two Counts |
[1] chr18:32867581..32873274 --- chr18:32922822..32925514 7 |
[2] chr18:32868753..32872112 --- chr18:32951673..32954977 4 |
[3] chr18:32869486..32873870 --- chr18:32874778..32879603 13 |
[4] chr18:32869839..32873068 --- chr18:32879912..32884536 4 |
[5] chr18:47003048..47019610 --- chr18:47008665..47025005 85 |
...
[2903] chr17:65222692..65227179 --- chr17:65239229..65241334 4 |
[2904] chr17:65231015..65237268 --- chr17:65235900..65244024 12 |
[2905] chr17:45248915..45264031 --- chr17:45257291..45268317 43 |
[2906] chr17:60130322..60137699 --- chr17:60137079..60144580 21 |
[2907] chr18:227929..232043 --- chr18:265870..268355 3 |
p.value fdr
[1] 2.51251e-23 6.28044e-21
[2] 4.69817e-16 5.97214e-14
[3] 0 0
[4] 3.61832e-16 4.67152e-14
[5] 0 0
...

7

[2903] 3.21725e-18 5.20359e-16
[2904] 0 0
[2905] 0 0
[2906] 0 0
[2907] 1.57957e-11 9.55328e-10
##

seqinfo: 25 sequences from an unspecified genome; no seqlengths

However, one of the most powerful features in the GenomicInteractions package is the ability to annotate
each anchor with a list of genomic regions and then summarise interactions according to these features. This
annotation is implemented as metadata columns for the anchors in the GenomicInteractions object and so
is fast, and facilitates more complex analyses.

The order in which we annotate the anchors is important, since each anchor can only have one node.class.
The first listed take precedence. Any regions not overlapping ranges in annotation.features will be labelled
as distal.

annotation.features = list(promoter=refseq.promoters,
terminator=refseq.terminators,
gene.body=refseq.transcripts)

annotateInteractions(k562.rep1, annotation.features)

Annotating with promoter ...

Annotating with terminator ...

Annotating with gene.body ...

annotationFeatures(k562.rep1)

[1] "gene.body" "promoter" "distal" "terminator"

We can now find interactions involving promoters using the annotated node.class for each anchor:

p.one = anchorOne(k562.rep1)$node.class == "promoter"
p.two = anchorTwo(k562.rep1)$node.class == "promoter"
k562.rep1[p.one|p.two]

GenomicInteractions object with 2907 interactions and 2 metadata columns:
Name: k562
Description: PolII-8wg16 Chia-PET for K562
Sum of interactions: 58468
Annotated: yes
Annotated with: promoter, gene.body, distal, terminator
Interactions:
Anchor One Anchor Two Counts |
[1] chr17:616579..621961 --- chr17:620668..626263 7 |
[2] chr17:632527..638035 --- chr17:636589..641349 9 |
[3] chr17:634119..651606 --- chr17:642299..659172 55 |
[4] chr17:654892..657597 --- chr17:683191..687275 6 |

8

[5] chr17:656002..658841 --- chr17:679595..682692 3 |
...
[2903] chr18:77781151..77783476 --- chr18:77792968..77795855 3 |
[2904] chr18:77784590..77787797 --- chr18:77792148..77795822 6 |
[2905] chr18:77792093..77797983 --- chr18:77797455..77803127 13 |
[2906] chr18:77793365..77797939 --- chr18:77864889..77868321 8 |
[2907] chr18:77863992..77870413 --- chr18:77868294..77877151 18 |
p.value fdr
[1] 2.06358e-32 8.50563e-30
[2] 2.395e-36 1.1518e-33
[3] 0 0
[4] 4.86283e-24 1.27856e-21
[5] 6.23098e-14 5.72161e-12
...
[2903] 8.97548e-14 8.09366e-12
[2904] 4.16341e-26 1.24576e-23
[2905] 0 0
[2906] 6.61618e-30 2.41717e-27
[2907] 0 0
##

seqinfo: 25 sequences from an unspecified genome; no seqlengths

This information can be used to categorise interactions into promoter-distal, promoter-terminator etc. A
table of interaction types can be generated with categoriseInteractions:

categoriseInteractions(k562.rep1)

category count
1 gene.body-gene.body 795
2 gene.body-promoter 917
3 gene.body-distal 76
4 gene.body-terminator 164
5 promoter-promoter 1187
6 promoter-distal 519
7 promoter-terminator 284
8 distal-distal 396
9 distal-terminator 101
10 terminator-terminator 70

Alternatively, we can subset the object based on interaction type:

k562.rep1[isInteractionType(k562.rep1, "terminator", "gene.body")]

GenomicInteractions object with 164 interactions and 2 metadata columns:
Name: k562
Description: PolII-8wg16 Chia-PET for K562
Sum of interactions: 930
Annotated: yes
Annotated with: terminator, gene.body
Interactions:
Anchor One Anchor Two Counts |

9

[1] chr17:1471460..1474306 --- chr17:1476212..1479585 4 |
[2] chr17:1632603..1638741 --- chr17:1636657..1642967 12 |
[3] chr17:3845975..3849573 --- chr17:3908008..3910817 5 |
[4] chr17:4055645..4058706 --- chr17:4063341..4068158 4 |
[5] chr17:4443889..4451615 --- chr17:4446814..4454998 11 |
...
[160] chr18:32873043..32876330 --- chr18:32911004..32914907 4 |
[161] chr18:33566139..33569380 --- chr18:33571111..33574360 3 |
[162] chr18:33689982..33692774 --- chr18:33695495..33699363 4 |
[163] chr18:42638745..42641928 --- chr18:42647110..42649707 3 |
[164] chr18:77914125..77916781 --- chr18:77919050..77922761 3 |
p.value fdr
[1] 1.1438e-18 1.92712e-16
[2] 0 4.06377e-44
[3] 1.46527e-19 2.69952e-17
[4] 4.96495e-19 8.66918e-17
[5] 7.2293e-42 4.17953e-39
...
[160] 1.37802e-15 1.62547e-13
[161] 5.37957e-15 5.74333e-13
[162] 1.35703e-19 2.5096e-17
[163] 1.03659e-15 1.24713e-13
[164] 2.9097e-15 3.24878e-13
##

seqinfo: 25 sequences from an unspecified genome; no seqlengths

The 3 most common node.class values have short functions defined for convenience (see ?is.pp for a
complete list):

k562.rep1[is.pp(k562.rep1)] # promoter-promoter interactions
k562.rep1[is.dd(k562.rep1)] # distal-distal interactions
k562.rep1[is.pt(k562.rep1)] # promoter-terminator interactions

Summary plots of interactions classes can easily be produced to get an overall feel for the data:

plotInteractionAnnotations(k562.rep1, other=5)

10

other

 9.12 %promoter−terminator

 6.3 %

distal−distal

 8.78 %

promoter−distal

 11.5 %

gene.body−gene.body
 17.6 %

gene.body−promoter

 20.3 %

promoter−promoter

 26.3 %

Interaction Classes

viewpoints will only take those interactions with a certain node.class:

plotInteractionAnnotations(k562.rep1, other=5, viewpoints="promoter")

promoter−terminator

 9.77 %

promoter−distal
 17.9 %

promoter−gene.body
 31.5 %

promoter−promoter

 40.8 %

Interaction Classes

These are also combined in the function plotSummaryStats.

11

Feature Summaries

The summariseByFeatures allows us to look in more detail at interactions involving a specific set of loci. In
this example we use all RefSeq promoters, which we already have loaded in a GRangesList object.

It is however possible to use any dataset which can be represented as a named GRanges object, for example
transcription-factor ChIP data, predicted cis-regulatory sites or certain categories of genes.

The categories are generated automatically from the annotated node.class values in the object.

k562.rep1.promoter.annotation = summariseByFeatures(k562.rep1, refseq.promoters,
"promoter", distance.method="midpoint",
annotate.self=TRUE)

colnames(k562.rep1.promoter.annotation)

[1] "Promoter.id"
[2] "numberOfPromoterInteractions"
[3] "numberOfPromoterUniqueInteractions"
[4] "numberOfPromoterInterChromosomalInteractions"
[5] "numberOfPromoterUniqueInterChromosomalInteractions"
[6] "numberOfPromoterGene.bodyInteractions"
[7] "numberOfPromoterPromoterInteractions"
[8] "numberOfPromoterDistalInteractions"
[9] "numberOfPromoterTerminatorInteractions"
[10] "numberOfUniquePromoterGene.bodyInteractions"
[11] "numberOfUniquePromoterPromoterInteractions"
[12] "numberOfUniquePromoterDistalInteractions"
[13] "numberOfUniquePromoterTerminatorInteractions"
[14] "PromoterDistanceMedian"
[15] "PromoterDistanceMean"
[16] "PromoterDistanceMinimum"
[17] "PromoterDistanceMaximum"
[18] "PromoterDistanceWeightedMedian"
[19] "numberOfSelfPromoterGene.bodyInteractions"
[20] "numberOfSelfPromoterPromoterInteractions"
[21] "numberOfSelfPromoterTerminatorInteractions"
[22] "numberOfSelfUniquePromoterGene.bodyInteractions"
[23] "numberOfSelfUniquePromoterPromoterInteractions"
[24] "numberOfSelfUniquePromoterTerminatorInteractions"

This allows us to very quickly generate summaries of the data and provides a quick method to isolate genes
of interest. In this case we produce lists of RefSeq IDs, which can easily be converted to EntrezIDs or
gene symbols through existing BioConductor packages (in this case org.Hs.eg.db provides bimaps between
common human genome annotations).

Which promoters have the strongest Promoter-Promoter interactions based on PET-counts?

i = order(k562.rep1.promoter.annotation$numberOfPromoterPromoterInteractions,
decreasing=TRUE)[1:10]

k562.rep1.promoter.annotation[i,"Promoter.id"]

[1] "100506779" "9256" "406934" "54894" "100616220"
[6] "6827" "56155" "5889" "5034" "396"

12

Which promoters are contacting the largest number of distal elements?

i = order(k562.rep1.promoter.annotation$numberOfUniquePromoterDistalInteractions,
decreasing=TRUE)[1:10]

k562.rep1.promoter.annotation[i,"Promoter.id"]

[1] "10140" "400604" "7050" "100130581" "100616277"
[6] "26118" "100874261" "101927666" "140735" "5366"

What percentage of promoters are in contact with transcription termination sites?

total = sum(k562.rep1.promoter.annotation$numberOfPromoterTerminatorInteractions > 0)
sprintf("%.2f%% of promoters have P-T interactions", 100*total/nrow(k562.rep1.promoter.annotation))

[1] "16.43% of promoters have P-T interactions"

References

1. Li, Guoliang, et al. “Software ChIA-PET tool for comprehensive chromatin interaction analysis with
paired-end tag sequencing.” Genome Biol 11 (2010): R22.

2. Li, Guoliang, et al. “Extensive promoter-centered chromatin interactions provide a topological basis for
transcription regulation.” Cell 148.1 (2012): 84-98

13

	ChIA-PET
	Imports
	Data
	GenomicInteractions Objects
	Annotation
	Feature Summaries
	References

