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Abstract

This vignette describes the functionality implemented in the MSnbase
package. MSnbase aims at (1) facilitating the import, processing, visu-
alisation and quantification of mass spectrometry data into the R envi-
ronment (R Development Core Team, 2011) by providing specific data
classes and methods and (2) enabling the utilisation of throughput-high
data analysis pipelines provided by the Bioconductor (Gentleman et al.,
2004) project.
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Foreword

MSnbase is in an early development (see section 8 for details about packages
and version used in this vignette). Although main data structures have been
thought out and are meant to be compatible with other existing mature infras-
tructure in the Bioconductor project, changes may occur in the future. Current
functionality will evolve and new one will be added. Although at an early stage,
this package is released in the hope that it may foster new developments in pro-
teomics data analysis within R by providing a common infrastructure. Several
package developers working with mass spectrometry and proteomics data met at
the Bioconductor Developer Meeting Europe1 held in Heidelberg in November
2010, and agreed to combine efforts. This library is one attempt to do so.

You are welcome to contact me for questions, bugs, typos or suggestions
about MSnbase. If you wish to reach a broader audience for general questions
about proteomics analysis using R, you may want to use the Bioconductor mail-
ing list2.

1 Introduction

MSnbase (Gatto and Lilley, 2012) aims are providing a reproducible research
framework to proteomics data analysis. It should allow researcher to easily
mine mass spectrometry data, explore the data and its statistical properties
and visually display these.

MSnbase also aims at being compatible with the infrastructure implemented
in Bioconductor, in particular Biobase. As such, classes developed specifically
for proteomics mass spectrometry data are based on the eSet and Expression

1http://bioconductor.org/help/course-materials/2010/HeidelbergNovember2010/
2https://stat.ethz.ch/mailman/listinfo/bioconductor
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classes. The main goal is to assure seamless compatibility with existing meta
data structure, accessor methods and normalisation techniques.

This vignette illustrates MSnbase utility using a dummy data sets provided
with the package without describing the underlying data structures. More de-
tails can be found in the package, classes, method and function documentations.
A description of the classes is provided in the MSnbase-development vignette.

Speed and memory requirements Raw mass spectrometry file are gen-
erally several hundreds of MB large and most of this is used for binary raw
spectrum data. As such, data containers can easily grow very large and thus
require large amounts of RAM. This requirement may be tackled in the future
by avoiding to load the raw data into memory and using random access to the
content of mzXML/mzML data files on demand. When focusing on reporter ion
quantitation, a direct solution for this is to trim the spectra using the trimMz

method to select the area of interest and thus substantially reduce the size
of the Spectrum objects. This is illustrated in section 5.2 on page 13 of the
MSnbase-demo vignette.

The independent handling of spectra is ideally suited for parallel processing.
This will be added soon.

2 Data structure and content

2.1 Importing experiments

MSnbase is able to import raw MS data stored in one of the XML-based formats
as well as peak lists in the mfg format3

Raw data The XML-based formats, mzXML (Pedrioli et al., 2004), mzData (Or-
chard et al., 2007) and mzML (Martens et al., 2010) can be imported with the
readMSData function, as illstrated below (see ?readMSData for more details).

> file <- dir(system.file(package="MSnbase", dir="extdata"),

+ full.names=TRUE, pattern="mzXML$")

> rawdata <- readMSData(file, msLevel=2, verbose=FALSE)

Either MS1 or MS2 spectra can be loaded at a time by setting the msLevel

parameter accordingly. In this document, we will use the itraqdata data set,
provided with MSnbase. It includes feature metadata, accessible with the fData
accessor. The metadata includes identification data for the 55 MS2 spectra.

Peak lists Peak lists can often be exported after spectrum processing from
vendor-specific software and are also used as input to search engines. Peak

3Mascot Generic Format – http://www.matrixscience.com/help/data_file_help.html#

GEN
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lists in mgf format can be imported with the function readMgfData (see ?read-

MgfData for details) to create experiment objects. Experiments or individual
spectra can be exported to an mgf file with the writeMgfData methods (see
?writeMgfData for details and examples).

See also section 6.2 to import quantitative data stored in spreadsheets into
R for further processing using MSnbase.

2.2 MS experiments

Raw data is contained in MSnExp objects, that stores all the spectra of an ex-
periment, as defined by one or multiple raw data files.

> library("MSnbase")

> itraqdata

Object of class "MSnExp"

Object size in memory: 1.86 Mb

- - - Spectra data - - -

MS level(s): 2

Number of MS1 acquisitions: 1

Number of MSn scans: 55

Number of precursor ions: 55

55 unique MZs

Precursor MZ's: 401.74 - 1236.1

MSn M/Z range: 100 2069.27

MSn retention times: 19:9 - 50:18 minutes

- - - Processing information - - -

Data loaded: Wed May 11 18:54:39 2011

MSnbase version: 1.1.22

- - - Meta data - - -

phenoData: none

Loaded from:

dummyiTRAQ.mzXML

protocolData: none

featureData

featureNames: X1 X10 ... X9 (55 total)

fvarLabels: spectrum ProteinAccession ProteinDescription

PeptideSequence

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

> head(fData(itraqdata))

spectrum ProteinAccession ProteinDescription

X1 1 BSA bovine serum albumin

X10 10 ECA1422 glucose-1-phosphate cytidylyltransferase
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X11 11 ECA4030 50S ribosomal subunit protein L4

X12 12 ECA3882 chaperone protein DnaK

X13 13 ECA1364 succinyl-CoA synthetase alpha chain

X14 14 ECA0871 NADP-dependent malic enzyme

PeptideSequence

X1 NYQEAK

X10 VTLVDTGEHSMTGGR

X11 SPIWR

X12 TAIDDALK

X13 SILINK

X14 DFEVVNNESDPR

As illustrated above, showing the experiment textually displays it’s content:

• Information about the raw data, i.e. the spectra.

• Specific information about the experiment processing4 and package ver-
sion. This slot can be accessed with the processingData method.

• Other meta data, including experimental phenotype, file name(s) used to
import the data, protocol data, information about features (individual
spectra here) and experiment data. Most of these are implemented as in
the eSet class and are described in more details in their respective man-
ual pages. See ?MSnExp and references therein for additional background
information.

The experiment meta data associated with an MSnExp experiment is of
class MIAPE. It stores general information about the experiment as well as
MIAPE (Minimum Information About a Proteomics Experiment) infor-
mation (Taylor et al., 2007, 2008). This meta-data can be accessed with
the experimentData method. When available, a summary of MIAPE-MS
data can be printed with the msInfo method. See ?MIAPE for more details.

2.3 Spectra objects

The raw data is composed of the 55 MS spectra. The spectra are named indi-
vidually (X1, X10, X11, X12, X13, X14, ...) and stored in a environment. They
can be accessed individually with itraqdata[["X1"]] or itraqdata[[1]], or
as a list with spectra(itraqdata). As we have loaded our experiment speci-
fying msLevel=2, the spectra will all be of level 2 (or higher, if available).

> sp <- itraqdata[["X1"]]

> sp

Object of class "Spectrum2"

Precursor: 520.7833

4this part will be automatically updated when the object is modified with it’s ad hoc
methods, as illustrated later
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Retention time: 19:9

Charge: 2

MSn level: 2

Peaks count: 1922

Total ion count: 26413754

Attributes of individual spectra or of all spectra of an experiment can be
accessed with their respective methods: precursorCharge for the precursor
charge, rtime for the retention time, mz for the MZ values, intensity for the
intensities, ... see the Spectrum, Spectrum1 and Spectrum2 manuals for more
details.

> peaksCount(sp)

[1] 1922

> head(peaksCount(itraqdata))

X1 X10 X11 X12 X13 X14

1922 1376 1571 2397 2574 1829

> rtime(sp)

[1] 1149.31

> head(rtime(itraqdata))

X1 X10 X11 X12 X13 X14

1149.31 1503.03 1663.61 1663.86 1664.08 1664.32

2.4 Reporter ions

Reporter ions are defined with the ReporterIons class. Specific peaks of interest
are defined by a MZ value, a with around the expected MZ and a name (and
optionally a colour for plotting, see section 3). ReporterIons instances are
required to quantify reporter peaks in MSnExp experiments. Instances for the
most commonly used isobaric tags like iTRAQ 4-plex and 8-plex and TMT tags
are already defined in MSnbase. See ?ReporterIons for details about how to
generate new ReporterIons objects.

> iTRAQ4

Object of class "ReporterIons"

iTRAQ4: '4-plex iTRAQ' with 4 reporter ions

- 114.1 +/- 0.05 (red)

- 115.1 +/- 0.05 (green)

- 116.1 +/- 0.05 (blue)

- 117.1 +/- 0.05 (yellow)
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3 Plotting raw data

3.1 Default plots

Spectra can be plotted individually or as part of (subset) experiments with the
plot method. Full spectra can be plotted (using full=TRUE), specific reporter
ions of interest (by specifying with reporters with reporters=iTRAQ4 for in-
stance) or both (see figure 1).

> plot(sp,reporters=iTRAQ4,full=TRUE)
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Figure 1: Raw MS2 spectrum with details about reporter ions.

It is also possible to plot all spectra of an experiment (figure 2). Lets start
by subsetting the itraqdata experiment using the protein accession numbers
included in the feature metadata, and keep the 3 from the BSA protein.

7



> sel <- fData(itraqdata)$ProteinAccession=="BSA"

> bsa <- itraqdata[sel]

> bsa

Object of class "MSnExp"

Object size in memory: 0.1 Mb

- - - Spectra data - - -

MS level(s): 2

Number of MS1 acquisitions: 1

Number of MSn scans: 3

Number of precursor ions: 3

3 unique MZs

Precursor MZ's: 434.95 - 651.92

MSn M/Z range: 100 1351.77

MSn retention times: 19:9 - 36:17 minutes

- - - Processing information - - -

Data loaded: Wed May 11 18:54:39 2011

Data [logically] subsetted 3 spectra: Thu Feb 16 22:22:47 2012

MSnbase version: 1.1.22

- - - Meta data - - -

phenoData: none

Loaded from:

dummyiTRAQ.mzXML

protocolData: none

featureData

featureNames: X1 X52 X53

fvarLabels: spectrum ProteinAccession ProteinDescription

PeptideSequence

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

> as.character(fData(bsa)$ProteinAccession)

[1] "BSA" "BSA" "BSA"

These can then be visualised together by plotting the MSnExp object, as
illustrated on figure 2.

3.2 Customising your plots

The MSnbase plot methods have a logical plot parameter (default is TRUE),
that specifies if the plot should be printed to the current device. A plot object
is also (invisibly) returned, so that it can be saved as a variable for later use or
for customisation.

MSnbase uses the ggplot2 package to generate figures, which can subsequently
easily be customised. More details about ggplot2 can be found in Wickham
(2009) (especially chapter 8) and on http://had.co.nz/ggplot2/. Finally, if a
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> plot(bsa,reporters=iTRAQ4,full=FALSE)
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Figure 2: Experiment-wide raw MS2 spectra. The y-axes of the individual
spectra are automatically rescaled to the same range. See section 6.4 to rescale
peaks identically.

9



plot object has been saved in a variable p, it is possible to obtain a summary
about the object with summary(p). To view the data frame used to generate
the plot, use p@data.

4 Quality control

The current section is not executed dynamically for package size and processing
time constrains. The figures and tables have been generated with the respective
methods and included statically in the vignette for illustration purposes.

MSnbase allows easy and flexible access to the data, which allows to visualise
data features to assess it’s quality. Some methods are readily available, although
many QC approaches will be experiment specific and users are encourage to
explore their data.

The plot2d method takes one MSnExp instance as firs argument to produce
retention time vs. precursor MZ scatter plots. Points represent individual MS2
spectra and can be coloured based on precursor charge (with second argument
z="charge"), total ion current (z="tic"), number of peaks in the MS2 spectra
z="peaks.count") or, when multiple data files were loaded, file z="file"), as
illustrated on figure 3. The lower right panel is produced for only a subset of
proteins. See the method documentation for more details.

Figure 3: Illustration of the plot2d output.
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The plotDensity method illustrates the distribution of several parameters
of interest (see figure 4). Similarly to plot2d, the first argument is an MSnExp

instance. The second is one of precursor.mz, peaks.count or tic, whose
density will be plotted. An optional third argument specifies whether the x
axes should be logged.

Figure 4: Illustration of the plotDensity output.

The plotMzDelta method5 implements the M/Z delta plot from Foster et al.
(2011) The M/Z delta plot illustrates the suitability of MS2 spectra for identi-
fication by plotting the M/Z differences of the most intense peaks. The result-
ing histogram should optimally shown outstanding bars at amino acid residu
masses. More details and parameters are described in the method documenta-
tion (?plotMzDelta). Figure 5 has been generated using the PRIDE experiment
12011, as in Foster et al. (2011).

In section 7 on page 25, we illustrate how to assess incomplete reporter ion
dissociation.

5 Data processing

5.1 Cleaning spectra

There are several methods implemented to perform basic data manipulation.
Low intensity peaks can be set to 0 with the removePeaks method from spectra
or whole experiments. The intensity threshold below which peaks are removed is
defined by the t parameter. t can be specified directly as a numeric. The default
value is the character "min", that will remove all peaks equal to the lowest
non null intensity in any spectrum. We observe the effect of the removePeaks

method by comparing total ion count (i.e. the total intensity in a spectrum)

5The code to generate the histograms has been contributed by Guangchuang Yu from Jinan
University, China.

11



Histogram of Mass Delta Distributions for PRIDE experiment 12011
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Figure 5: Illustration of the plotMzDelta output for the PRIDE experiment
12011, as in figure 4A from Foster et al. (2011).

with the tic method before (object itraqdata) and after (object experiment)
for spectrum X55.

> experiment <- removePeaks(itraqdata,t=400,verbose=FALSE)

> ## total ion current

> tic(itraqdata[["X55"]])

[1] 555408.8

> tic(experiment[["X55"]])

[1] 499769.6

Unlike the name might suggest, the removePeaks method does not actually
remove peaks from the spectrum; they are set to 0. This can be checked using
the peaksCount method, that returns the number of peaks (including 0 intensity
peaks) in a spectrum. To effectively remove 0 intensity peaks from spectra, and
reduce the size of the data set, one can use the clean method. The effect of the
removePeaks and clean methods are illustrated on figure 7 on page 14.

> ## number of peaks

> peaksCount(itraqdata[["X55"]])
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Figure 6: Same spectrum before (left) and after setting peaks <= 400 to 0.

[1] 1726

> peaksCount(experiment[["X55"]])

[1] 1726

> experiment <- clean(experiment,verbose=FALSE)

> peaksCount(experiment[["X55"]])

[1] 442

5.2 Focusing on specific MZ values

Another useful manipulation method is trimMz, that takes as parameters and
MSnExp (or a Spectrum) and a numeric mzlim. MZ values smaller then min(mzlim)

or greater then max(mzmax) are discarded. This method is particularly useful
when one wants to concentrate on a specific MZ range, as for reporter ions quan-
tification, and generally results in substantial reduction of data size. Compare
the size of the full trimmed experiment to the original 1.86 Mb.

> range(mz(itraqdata[["X55"]]))

[1] 100.0002 977.6636

> experiment <- trimMz(experiment,mzlim=c(112,120))

> range(mz(experiment[["X55"]]))

[1] 113.0532 117.1219
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Figure 7: This figure illustrated the effect or the removePeaks and clean meth-
ods. The left-most spectrum displays two peaks, of max height 3 and 7 re-
spectively. The middle spectrum shows the result of calling removePeaks with
argument t=3, which sets all data points of the first peak, whose maximum
height is smaller or equal to t to 0. The second peak is unaffected. Calling
clean after removePeaks effectively deletes successive 0 intensities from the
spectrum, as shown on the right plot.
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> experiment

Object of class "MSnExp"

Object size in memory: 0.28 Mb

- - - Spectra data - - -

MS level(s): 2

Number of MS1 acquisitions: 1

Number of MSn scans: 55

Number of precursor ions: 55

55 unique MZs

Precursor MZ's: 401.74 - 1236.1

MSn M/Z range: 112.04 119.87

MSn retention times: 19:9 - 50:18 minutes

- - - Processing information - - -

Data loaded: Wed May 11 18:54:39 2011

Curves <= 400 set to '0': Thu Feb 16 22:22:50 2012

Spectra cleaned: Thu Feb 16 22:22:53 2012

MZ trimmed [112..120]

MSnbase version: 1.1.22

- - - Meta data - - -

phenoData: none

Loaded from:

dummyiTRAQ.mzXML

protocolData: none

featureData

featureNames: X1 X10 ... X9 (55 total)

fvarLabels: spectrum ProteinAccession ProteinDescription

PeptideSequence

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

As can be seen above, all processing performed on the experiment is recorded
and displayed as integral part of the experiment object.

6 From spectra to quantitative expression data

6.1 Reporter ions quantitation

Quantitation is performed on fixed peaks in the spectra, that are specified with
an ReporterIons object. A specific peak is defined by it’s expected mz value
and is searched for within mz ± width. If no data is found, NA is returned.

> mz(iTRAQ4)

[1] 114.1 115.1 116.1 117.1

> width(iTRAQ4)
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[1] 0.05

The quantify method takes the following parameters: an MSnExp experi-
ment, a character describing the quantification method, the reporters to be
quantified and a strict logical defining whether data points ranging outside of
mz ± width should be considered for quantitation. Additionally, a progress bar
can be displaying when setting the verbose parameter to TRUE. Three quantifi-
cation methods are implemented, as illustrated on figure 8: trapezoidation

returns the area under the peak of interest, max returns the apex of the peak
and sum returns the sum of all intensities of the peak. See ?quantify for more
details.

The quantify method returns MSnSet objects, that extend the well-known
eSet class defined in the Biobase package. MSnSet instances are very similar
to ExpressionSet objects, except for the experiment meta-data that captures
MIAPE specific information. The assay data is a matrix of dimensions n×m,
where m is the number of features/spectra originally in the MSnExp used as
parameter in quantify and m is the number of reporter ions, that can be
accessed with the exprs method. The meta data is directly inherited from the
MSnExp instance.

> qnt <- quantify(experiment,

+ method="trap",

+ reporters=iTRAQ4,

+ strict=FALSE,

+ verbose=FALSE)

> qnt

MSnSet (storageMode: lockedEnvironment)

assayData: 55 features, 4 samples

element names: exprs

protocolData: none

phenoData

sampleNames: iTRAQ4.114 iTRAQ4.115 iTRAQ4.116 iTRAQ4.117

varLabels: mz reporters

varMetadata: labelDescription

featureData

featureNames: X1 X10 ... X9 (55 total)

fvarLabels: spectrum ProteinAccession ... collision.energy (13 total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'
Annotation: No annotation

- - - Processing information - - -

Data loaded: Wed May 11 18:54:39 2011

Curves <= 400 set to '0': Thu Feb 16 22:22:50 2012

Spectra cleaned: Thu Feb 16 22:22:53 2012

MZ trimmed [112..120]
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Figure 8: The different quantitation methods are illustrated above. Quantita-
tion using sum sums all the data points in the peaks to produce, for this example,
7, whereas method max only uses the peak’s maximum intensity, 3. Trapezoi-

dation calculates the area under the peak taking the full with into account
(using strict=FALSE gives 0.375) or only the width as defined by the reporter
(using strict=TRUE gives 0.2).
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iTRAQ4 quantification by trapezoidation: Thu Feb 16 22:22:58 2012

MSnbase version: 1.1.22

> head(exprs(qnt))

iTRAQ4.114 iTRAQ4.115 iTRAQ4.116 iTRAQ4.117

X1 1347.6158 2247.3097 3927.6931 7661.1463

X10 739.9861 799.3501 712.5983 940.6793

X11 27638.3582 33394.0252 32104.2879 26628.7278

X12 31892.8928 33634.6980 37674.7272 37227.7119

X13 26143.7542 29677.4781 29089.0593 27902.5608

X14 6448.0829 6234.1957 6902.8903 6437.2303

If no peak is detected for a reporter ion peak, the respective quantitation
value is set to NA. In our case, there is 1 such case in row 41. We will remove
the offending line, as we do not expect any missing peaks.

> sum(is.na(exprs(qnt)))

[1] 1

> whichRow <- which(is.na(exprs(qnt))) %% nrow(qnt)

> qnt <- qnt[-whichRow,]

> sum(is.na(exprs(qnt)))

[1] 0

6.2 Importing quantitation data

If quantitation data is already available as a spreadsheet, it can be imported,
along with additional optional feature and sample (pheno) meta data, with the
readMSnSet function. This function takes the respective text-based spreadsheet
(comma- or tab-separated) file names as argument to create a valid MSnSet

instance.
Note that the quantitation data of MSnSet objects can also be exported to

a text-based spreadsheet file using the write.exps method.

6.3 Peak adjustments

Single peak adjustment In certain cases, peak intensities need to be ad-
justed as a result of peak interferance. For example, the +1 peak of the pheny-
lalanine (F, Phe) immonium ion (with m/z 120.03) inteferes with the 121.1
TMT reporter ion. Below, we calculate the relative intensity of the +1 peaks
compared to the main peak using the Rdispo package.

> library(Rdisop)

> ## Phenylalanine immonium ion

> Fim <- getMolecule("C8H10N")

> getMass(Fim)
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[1] 120.0813

> isotopes <- getIsotope(Fim)

> F1 <- isotopes[2,2]

> F1

[1] 0.08573496

If desired, one can thus specifically quantify the F immonium ion in the
MS2 spectrum, estimate the intensity of the +1 ion (0.0857% of the F peak)
and substract this calculated value from the 121.1 TMT reporter intensity.

The above principle can also be generalised for a set of overlapping peaks,
as described below.

Reporter ions purity correction Impurities in the reporter reagents can
also bias the results and can be corrected when manufacturers provide correc-
tion coefficients. These generally come as percentages of each reporter ion that
have masses differing by -2, -1, +1 and +2 Da from the nominal reporter ion
mass due to isotopic variants. The purityCorrect method applies such correc-
tion to MSnSet instances. It also requires a square matrix as second argument,
impurities, that defines the relative percentage of reporter in the quantified
each peak. See ?purityCorrect for more details.

> impurities <- matrix(c(0.929,0.059,0.002,0.000,

+ 0.020,0.923,0.056,0.001,

+ 0.000,0.030,0.924,0.045,

+ 0.000,0.001,0.040,0.923),

+ nrow=4)

> qnt.crct <- purityCorrect(qnt,impurities)

> head(exprs(qnt))

iTRAQ4.114 iTRAQ4.115 iTRAQ4.116 iTRAQ4.117

X1 1347.6158 2247.3097 3927.6931 7661.1463

X10 739.9861 799.3501 712.5983 940.6793

X11 27638.3582 33394.0252 32104.2879 26628.7278

X12 31892.8928 33634.6980 37674.7272 37227.7119

X13 26143.7542 29677.4781 29089.0593 27902.5608

X14 6448.0829 6234.1957 6902.8903 6437.2303

> head(exprs(qnt.crct))

iTRAQ4.114 iTRAQ4.115 iTRAQ4.116 iTRAQ4.117

X1 1402.9442 2214.0346 3762.2549 8114.4429

X10 779.4666 793.0792 678.8083 985.2003

X11 29034.3781 33271.0470 31484.7131 27279.1383

X12 33618.9092 33046.3075 37031.6133 38492.1376

X13 27508.0038 29440.9296 28390.4561 28814.2463

X14 6809.7600 6090.7894 6799.5030 6636.1450
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The makeImpuritiesMatrix can be used to create impurity matrices. It
opens a rudimentary spreadsheet that can be directly edited.

6.4 Normalisation

A MSnSet object is meant to be compatible with further downstream pack-
ages for data normalisation and statistical analysis. There is also a normalise

method for expression sets. The method takes and instance of class MSnSet as
first argument, and a character to describe the method to be used:

quantiles Applies quantile normalisation (Bolstad et al., 2003) as imple-
mented in the normalize.quantiles function of the preprocessCore pack-
age.

quantiles.robust Applies robust quantile normalisation (Bolstad et al., 2003)
as implemented in the normalize.quantiles.robust function of the preprocessCore
package.

vsn Applies variance stabilisation normalization (Huber et al., 2002) as imple-
mented in the vsn2 function of the vsn package.

max Each feature’s reporter intensity is divided by the maximum of the reporter
ions intensities.

sum Each feature’s reporter intensity is divided by the sum of the reporter ions
intensities.

> qnt.max <- normalise(qnt,"max")

> qnt.sum <- normalise(qnt,"sum")

> qnt.quant <- normalise(qnt,"quantiles")

> qnt.qrob <- normalise(qnt,"quantiles.robust")

> qnt.vsn <- normalise(qnt,"vsn")

The effect of these are illustrated on figure 9 and figure 10 reproduces figure
3 of Karp et al. (2010) that described the application of vsn on iTRAQ reporter
data.

Note that it is also possible to normalise individual spectra or whole MSnExp

experiments with the normalise method using the max method. This will rescale
all peaks between 0 and 1. To visualise the relative reporter peaks, one should
this first trim the spectra using method trimMz as illustrated in section 5, then
normalise the MSnExp with normalise using method="max" as illustrated above
and plot the data using plot (figure 11).
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Figure 9: Comparison of the normalisation MSnSet methods. Note that vsn
also glog-transforms the intensities.
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Figure 10: CV versus signal intensity comparison for log2 and vsn transformed
data. Lines indicate running CV medians.

6.5 Feature aggregation

The above quantitation and normalisation has been performed on quantitative
data obtained from individual spectra. However, the biological unit of interest
is not the spectrum but the peptide or the protein. As such, it is important to
be able to summarise features that belong to a same group, i.e. spectra from
one peptide, peptides that originate from one protein, or directly combine all
spectra that have been uniquely associated to one protein.

MSnbase provides one function, combineFeatures, that allows to aggregate
features stored in an MSnSet using build-in or user defined summary function
and return a new MSnSet instance. The three main arguments are described
below. Additional details can be found in the method documentation.

combineFeatures’s first argument, object, is an instance of class MSnSet, as
has been created in the section 6.1 for instance. The second argument, groupBy,
is a factor than has as many elements as there are features in the MSnSet ob-

ject argument. The features corresponding to the groupBy levels will be aggre-
gated so that the resulting MSnSet output will have length(levels(groupBy))
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Figure 11: Experiment-wide normalised MS2 spectra. The y-axes of the indi-
vidual spectra is now rescaled between 0 and 1 (highest peak), as opposed to
figure 2.
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features. Here, we will combine individual MS2 spectra based on the protein
they originate from. As shown below, this will result in 40 new aggregated
features.

> gb <- fData(qnt)$ProteinAccession

> table(gb)

gb

BSA ECA0172 ECA0435 ECA0452 ECA0469 ECA0621 ECA0631 ECA0691 ECA0871 ECA0978

3 1 2 1 2 1 1 1 1 1

ECA1032 ECA1093 ECA1104 ECA1294 ECA1362 ECA1363 ECA1364 ECA1422 ECA1443 ECA2186

1 1 1 1 1 1 1 1 1 1

ECA2391 ECA2421 ECA2831 ECA3082 ECA3175 ECA3349 ECA3356 ECA3377 ECA3566 ECA3882

1 1 1 1 1 2 1 1 2 1

ECA3929 ECA3969 ECA4013 ECA4026 ECA4030 ECA4037 ECA4512 ECA4513 ECA4514 ENO

1 1 1 2 1 1 1 1 6 3

> length(unique(gb))

[1] 40

The third argument, fun, defined how to combine the features. Predefined
functions are readily available and can be specified as strings (fun="mean",
fun="median", fun="sum", fun="weighted.mean" or fun="medianpolish" to
compute respectively the mean, media, sum, weighted mean or median polish
of the features to be aggregated). Alternatively, is is possible to supply user
defined functions with fun=function(x) { ... }. We will use the median

here.

> qnt2 <- combineFeatures(qnt,groupBy=gb,fun="median")

> qnt2

MSnSet (storageMode: lockedEnvironment)

assayData: 40 features, 4 samples

element names: exprs

protocolData: none

phenoData

sampleNames: iTRAQ4.114 iTRAQ4.115 iTRAQ4.116 iTRAQ4.117

varLabels: mz reporters

varMetadata: labelDescription

featureData

featureNames: X1 X41 ... X27 (40 total)

fvarLabels: spectrum ProteinAccession ... collision.energy (13 total)

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'
Annotation: No annotation

- - - Processing information - - -
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Data loaded: Wed May 11 18:54:39 2011

Curves <= 400 set to '0': Thu Feb 16 22:22:50 2012

Spectra cleaned: Thu Feb 16 22:22:53 2012

MZ trimmed [112..120]

iTRAQ4 quantification by trapezoidation: Thu Feb 16 22:22:58 2012

Features subsetted: Thu Feb 16 22:22:58 2012

Combined 54 features into 40 using median: Thu Feb 16 22:23:00 2012

MSnbase version: 1.1.22

6.6 Label-free MS2 quantitation

Note that if samples are not multiplexed, label-free MS2 quantitation is pos-
sible using MSnbase. Once individual spectra have been assigned to peptides
and proteins, it becomes straightforward to estimate protein quantities using
the spectral counting method, as illustrated in section 6.5, when the groupBy

argument is defined.

7 Quantitative assessment of incomplete disso-
ciation

Quantitation using isobaric reporter tags assumes complete dissociation between
the reporter group (red on figure 12), balance group (blue) and peptide (the
peptide reactive group is drawn in green). However, incomplete dissociation does
occur and results in an isobaric tag (i.e reporter and balance groups) specific
peaks.

Figure 12: iTRAQ 4-plex isobaric tags reagent consist of three parts: (1) a
charged reporter group (MZ of 114, 115, 116 and 117) that is unique to each
of the four reagents (red), (2) an uncharged mass balance group (28-31 Da)
(blue)and (3) a peptide reactive group (NHS ester) that binds to the peptide.
In case of incomplete dissociation, the reporter and balance groups produce a
specific peaks at MZ 145.

MSnbase provides, among others, a ReporterIons object for iTRAQ 4-plex
that includes the 145 peaks, called iTRAQ5. This can then be used to quantify
the experiment as show in section 6.1 to estimate incomplete dissociation for
each spectrum.
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> iTRAQ5

Object of class "ReporterIons"

iTRAQ4: '4-plex iTRAQ with isobaric tag' with 5 reporter ions

- 114.1 +/- 0.05 (red)

- 115.1 +/- 0.05 (green)

- 116.1 +/- 0.05 (blue)

- 117.1 +/- 0.05 (yellow)

- 145.1 +/- 0.05 (grey)

> incompdiss <- quantify(itraqdata,

+ method="trap",

+ reporters=iTRAQ5,

+ strict=FALSE,

+ verbose=FALSE)

> head(exprs(incompdiss))

iTRAQ5.114 iTRAQ5.115 iTRAQ5.116 iTRAQ5.117 iTRAQ5.145

X1 1347.6158 2247.3097 3927.6931 7661.1463 2063.8947

X10 739.9861 799.3501 712.5983 940.6793 467.3615

X11 27638.3582 33394.0252 32104.2879 26628.7278 13543.4565

X12 31892.8928 33634.6980 37674.7272 37227.7119 11839.2558

X13 26143.7542 29677.4781 29089.0593 27902.5608 12206.5508

X14 6448.0829 6234.1957 6902.8903 6437.2303 427.6654

Figure 13 compares these intensities for the whole experiment.
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8 Session information

• R version 2.14.1 (2011-12-22), x86_64-unknown-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=C, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

• Base packages: base, datasets, grDevices, graphics, grid, methods, stats,
utils

• Other packages: Biobase 2.14.0, MSnbase 1.2.3, Rcpp 0.9.9,
Rdisop 1.14.0, ggplot2 0.9.0, mzR 1.0.2, plyr 1.7.1, reshape 0.8.4,
zoo 1.7-7

• Loaded via a namespace (and not attached): BiocInstaller 1.2.1,
IRanges 1.12.6, MASS 7.3-17, RColorBrewer 1.0-5, affy 1.32.1,
affyio 1.22.0, codetools 0.2-8, colorspace 1.1-1, dichromat 1.2-4,
digest 0.5.1, lattice 0.20-0, limma 3.10.2, memoise 0.1, munsell 0.3,
preprocessCore 1.16.0, proto 0.3-9.2, reshape2 1.2.1, scales 0.1.0,
stringr 0.6, tools 2.14.1, vsn 3.22.0, xcms 1.30.3, zlibbioc 1.0.0
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Wojcik, and Henning Hermjakob. Five years of progress in the standardiza-
tion of proteomics data 4th annual spring workshop of the hupo-proteomics
standards initiative april 23-25, 2007 ecole nationale supÃl’rieure (ens), lyon,
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