
Rtreemix
March 24, 2012

distances Different distances between two given vectors

Description

These functions are used for calculating different distances between two given vectors. Thus,
L1.dist calculates the L1 distance, cosin.dist calculates the cosine distance, euclidian.dist
computes the Euclidian distance, and rank.cor.dist computes the rank correlation distance.
The vectors have to have same length. When using rank.cor.dist the vectors have to have
length larger than 4.

Usage

L1.dist(p, q)
cosin.dist(p, q)
euclidian.dist(x, y)
rank.cor.dist(x, y)

Arguments

p A numeric vector specifying the first component for the distance calculation.
It has to have the same length as q.

q A numeric vector specifying the second component for the distance calcula-
tion.

x Same as p.

y Same as q.

Value

The functions return the distance between the two given vectors.

Author(s)

Jasmina Bogojeska

See Also

kullback.leibler, L2.norm, stability.sim

1

2 L2.norm

Examples

Define two numeric vectors with equal lengths (> 4).
x <- c(1, 2, 3, 4, 5)
y <- c(5, 6, 7, 8, 9)

Calculate the L1 distance between the vectors x and y
L1.dist(x, y)

Calculate the Euclidian distance between the vectors x and y
euclidian.dist(x, y)

Calculate the cosine distance between the vectors x and y
cosin.dist(x, y)

Calculate the rank-correlation distance between the vectors x and y
rank.cor.dist(x, y)

L2.norm L2 norm of a given vector

Description

A function for calculating the L2 norm of a given numeric vector.

Usage

L2.norm(x)

Arguments

x A numeric vector.

Value

The function returns the L2 norm of the given vector x.

Author(s)

Jasmina Bogojeska

See Also

L1.dist

Examples

Define a numeric vector
y <- c(1, 2, 3, 4)

Calculate the L2 norm of the vector y
L2.norm(y)

Pval.dist 3

Pval.dist p-value of a given similarity value

Description

This function calculates the p-value of a given similarity value, i.e. the probability for obtaining the
same or a smaller value than the given one in a vector of random similarity values. The p-value is
used to determine whether the given similarity value is significant.

Usage

Pval.dist(dist.val, random.vals)

Arguments

dist.val A numeric value quanifying the similarity for which a p-value should be cal-
culated.

random.vals A numeric vector of random similarities used for calculating the p-value.

Value

It returns a numeric value between 0 and 1 that specifies the p-value of the given dist.val.

Author(s)

Jasmina Bogojeska

See Also

L1.dist, kullback.leibler, comp.models, stability.sim

Examples

The function is currently defined as
function(dist.val, random.vals) {
return((sum(random.vals <= dist.val) + 1) /(length(random.vals) + 1))
}

Define the similarity value and a vector of random similarities
sim.val <- 0.2
rand.vals <- c(0.1, 0.24, 0.28, 0.35, 0.15, 0.5, 0.14, 0.6, 0.8, 0.3)

Calculate the p-value of sim.val using the vector of random
similarities
Pval.dist(dist.val = sim.val, random.vals = rand.vals)

4 RtreemixData-class

RtreemixData-class Class "RtreemixData"

Description

This class is used to represent the results of genetic measurements of the occurence of subsets of a
given set of genetic events in a group of patients. Each observation is a binary vector that indicates
which events occured in a specific patient. The length of the vector equals the size of the set of
genetic events that is taken into consideration.

Objects from the Class

Objects can be created by calls of the form new("RtreemixData", Sample, Patients,
Events, Description, File). The RtreemixData class represents patterns of occurences
of subsets of a given set of genetic events in a specific group of patients. The patterns are given as
binary vectors with length equal to the size of the set of genetic events. In other words, it provides
a representation of the dataset used for learning an mutagenetic trees mixture model.

The Sample is a binary matrix where each row corresponds to the pattern of genetic events
observed in one of the given patients. Hence, the number of rows gives the number of patients, i.e.
the size of the dataset. Each column corresponds to one of the genetic events. Missing measurement
for the presence or absence of a certain genetic event in a given pattern is marked with -1. The initial
null event (that initially occurs in all patients) is not present in the sample, i.e. the first component in
each observation (which is always equal to 1) is left out. This is done for saving space and avoiding
the process of checking for correctly specified samples.

The Patients is a character vector that contains the IDs of the patients. The length of this
vector must be equal to the number of rows in the Sample.

The Events is a character vector that contains the labels of the genetic events taken into con-
sideration. Its length equals one plus the number of columns in the Sample. This is because of
the label of the null event. When the object of class RtreemixData is a parent of a randomly
generated RtreemixModel object, the events specify the labels of the genetic events present in
the random model, although the Sample slot is an empty matrix. This is because the random
mixture models are not estimated from a given dataset, but generated randomly for some set of
genetic events.

The Description is a character giving a short description for the created object.

The File specifies the path to a text file with a specific format which contains the infromation
needed to create an RtreemixData object (the patient IDs, the names of the events, the matrix
with the observations).

Slots

Sample: Object of class "matrix".

Patients: Object of class "character". The Patients must be of same length as the
number of rows in Sample.

Events: Object of class "character". The length of Events must be identical to the number
of columns in Sample plus one (for specifying the label of the null event).

Description: Object of class "character".

RtreemixData-class 5

Methods

Description signature(object = "RtreemixData"): A method for obtaining the de-
scription of the "RtreemixData" object.

Description<- signature(object = "RtreemixData"): A method for specifying the
Description of the data object.

Events signature(object = "RtreemixData"): A method for obtaining the labels of
the genetic events.

Events<- signature(object = "RtreemixData"): A method for replacing the names
of the genetic events in the data object. It checks to be sure the values have the right length.
As a parent data of a random RtreemixModel object the suitable labels of events present
in the model components can be specified although the Sample slot is an empty matrix.

Patients signature(object = "RtreemixData"): A method for obtaining the IDs of
the patients.

Patients<- signature(object = "RtreemixData"): A method for replacing the IDs of
the patients in the data object. It checks to be sure the values have the right length.

Sample signature(object = "RtreemixData"): A method for obtaining the matrix of
observations.

eventsNum signature(object = "RtreemixData"): A method for obtaining the num-
ber of genetic events.

sampleSize signature(object = "RtreemixData"): A method for obtaining the size
of the sample (the number of patients).

Author(s)

Jasmina Bogojeska

See Also

RtreemixGPS-class, RtreemixStats-class, RtreemixModel-class, fit-methods,
bootstrap-methods

Examples

Create an RtreemixData object from a file given in the examples directory of the package.
data1 <- new("RtreemixData", File = paste(system.file(package = "Rtreemix"), "/examples/treemix.pat", sep = ""))
show(data1) ## show the RtreemixData object

Create an RtreemixData object from a randomly generated RtreemixModel object.
rand.mod <- generate(K = 3, no.events = 9, noise.tree = TRUE, prob = c(0.2, 0.8))
data2 <- sim(model = rand.mod, no.draws = 300)
show(data2)

Create an RtreemixData object from a given binary matrix.
bin.mat <- cbind(c(1, 0, 0, 1, 1), c(0, 1, 0, 0, 1), c(1, 1, 0, 1, 0))
data3 <- new("RtreemixData", Sample = bin.mat, Events = c("0", "1", "2",
"3"))
show(data3)

6 RtreemixGPS-class

RtreemixGPS-class Class "RtreemixGPS"

Description

A class for describing the genetic progression scores (GPS) of a given set of patterns resulting
from a waiting time simulation along the edges of the tree components of a given mutagenetic trees
mixture model. It also contains GPS confidence intervals derived with the bootstrap method.

Objects from the Class

Objects can be created by calls of the form new("RtreemixGPS", Data, Model, SamplingMode,
SamplingParam, GPS, gpsCI). The RtreemixGPS class contains the GPS values each
assigned to the corresponding pattern from the dataset given by Data (the parent class). The GPS
values are derived in a waiting time simulation for a specified sampling mode and its correspond-
ing sampling parameter. Moreover, this class specifies the confidence intervals for the GPS values
derived with the bootstrap method.

The Data is an RtreemixData object that specifies the patterns for which the GPS values are
calculated.

The Model is an RtreemixModel object that specifies the mutagenetic trees mixture model used
for deriving the GPS values.

The SamplingMode is a character that specifies the sampling mode ("constant" or "exponen-
tial") used in the waiting time simulations.

The SamplingParam is a numeric that specifies the sampling parameter corresponding to the
sampling mode given by SamplingMode.

The GPS is a numeric vector that specifies the GPS value of each pattern in the given dataset
Data. Its length equals the number of patterns in Data.

The gpsCI is a numeric matrix that specifies the confidence intervals for each GPS value in the
vector GPS. The number of rows equals the number of patients in Data and the number of columns
equals 2. The first column gives the lower bound and the second column gives the upper bound of
each confidence interval.

Slots

Model: Object of class "RtreemixModel".

SamplingMode: Object of class "character". It can have one of the two possible values:
"constant" or "exponential".

SamplingParam: Object of class "numeric".

GPS: Object of class "numeric". The length of GPS must be equal to the number of patterns in
the parent RtreemixData object.

gpsCI: Object of class "matrix". It number of columns has to be 2 and the number of rows has
to be equal to the length of GPS.

Extends

Class "RtreemixData", directly.

RtreemixGPS-class 7

Methods

GPS signature(object = "RtreemixGPS"): A method for obtaining the GPS values
corresponding to the patterns in the parent RtreemixData object.

Model signature(object = "RtreemixGPS"): A method for obtaining the model used
for deriving the GPS values.

SamplingMode signature(object = "RtreemixGPS"): A method for obtaining the sam-
pling mode ("constant" or "exponential") used for the waiting time simulations.

SamplingParam signature(object = "RtreemixGPS"): A method for obtaining the
sampling parameter corresponding to the specified SamplingMode.

getData signature(object = "RtreemixGPS"): A method for obtaining the set of pat-
terns for which the GPS values are calculated.

gpsCI signature(object = "RtreemixGPS"): A method for obtaining the GPS confi-
dence intervals.

Note

The GPS examples are time consuming. They are commented out because of the time restrictions
of the check of the package. For trying out the code please copy it and uncomment it.

Author(s)

Jasmina Bogojeska

References

Estimating cancer survival and clinical outcome based on genetic tumor progression scores, J. Rah-
nenf\"urer et al.

See Also

RtreemixData-class, RtreemixModel-class, gps-methods, fit-methods, confIntGPS-
methods

Examples

Generate a random RtreemixModel object with 3 components and 9 genetic events.
#mod <- generate(K = 3, no.events = 9, noise.tree = TRUE, prob = c(0.2, 0.8))
#show(mod)
Generate an artificial dataset from the model mod.
#data <- sim(model = mod, no.draws = 300)
#show(data)

Create an RtreemixGPS object by calculating the GPS for all possible patterns.
#modGPS.all <- gps(model = mod, no.sim = 1000)
#show(modGPS.all)
Create an RtreemixGPS object by calculating the GPS for the data based on the model mod.
#modGPS <- gps(model = mod, data = data, no.sim = 1000)
#show(modGPS)

See the slots from the RtreemixGPS object.
#Model(modGPS)
#SamplingMode(modGPS)
#SamplingParam(modGPS)

8 RtreemixModel-class

#GPS(modGPS)
See data.
#getData(modGPS)

Create an RtreemixGPS object by calculating GPS values for a given dataset
and their 95% confidence intervals using the bootstrap method.
#modGPS2 <- confIntGPS(data = data, K = 2, B = 10)
#show(modGPS2)

See the GPS values for the object modGPS2 and their confidence intervals.
#GPS(modGPS2)
#gpsCI(modGPS2)

RtreemixModel-class
Class "RtreemixModel"

Description

This class contains all the data needed for characterizing the mutagenetic trees mixture model (mix-
ture parameters, mixture components, ...). The tree components of the model are given as a list of
directed graphNEL objects.

Objects from the Class

Objects can be created by calls of the form new("RtreemixModel", ParentData, Weights,
WeightsCI, Resp, CompleteMat, Star, Trees). The RtreemixModel class ex-
tends the RtreemixData class and specifies the mutagenetic trees mixture model. If the model is
not randomly generated the parent class gives the RtreemixData used for learning the mixture
model. The directed trees that build up the model are represented as a list of directed graphNEL
objects, and their weights (the mixture parameters) are given as a numeric vector. This class can
also contain other useful information connected with the mixture model like confidence intervals for
the mixture parameters and the edge weights (resulting from a bootstrap analysis), an indicator for
the presence of the star component, etc. They are all listed in the text below with brief descriptions.

The ParentData is an RtreemixData object that specifies the data used for estimating the
mutagenetic trees mixture model. It is not specified for random mixture models, since they are not
estimated from a given dataset but generated randomly.

The Weights is a numeric vector that contains the mixture parameters of the model. Its length
equals the length of the list of tree components Trees.

The WeightsCI is a named list with length equal to the length of the Weights. Each list
element is a numeric vector of length two specifying the lower and upper bound of the confidence
interval for the corresponding mixture parametar. The confidence intervals are derived using the
bootstrap method.

The Resp is a numeric matrix that specifies the responsibility of each tree component to generate
each of the patterns in the ParentData. The number of rows in Resp is equal to the number of
trees in the mixture (the length of the list Trees) and the number of columns equals the number
of patients in ParentData. For random mixture models it is an empty matrix, since they are not
estimated from a given dataset.

The CompleteMat is a binary matrix that specifies the complete data in case some measure-
ments for some patients are missing in the data used for learning the model (the ParentData).

RtreemixModel-class 9

It has the same size as the matrix specifying the data in ParentData. The missing data are esti-
mated in the EM-algorithm used for fitting the mixture model. When there are no missing data in
ParentData, or the model is randomly generated the CompleteMat is an empty matrix.

The Star is an indicator of the presence of a noise (star) component and is mostly relevant for
models with a single tree component, since it is assumed that mixture models with at least two
components always have the noise as a first component. It is of type logical.

The Trees is a list of directed graphNEL objects, each for every tree component in the mixture
model. The genetic events are represented as nodes in the graphs. The edgeData of each tree can
have two attributes: "weight" and "ci". Please see the help page on graph-class and
graphNEL-class in the package graph. The "weight" attribute is for edge weight, i.e. the
conditional probability that the child event of the edge occured given that the parent event already
occured. The "ci" attribute is for the bootstrap confidence intervals for the edge weight (a numeric
vector with length two).

Slots

Weights: Object of class "numeric". The length of the Weights must be equal to the length
of Trees.

WeightsCI: Object of class "list". The length of the WeightsCImust be equal to the length
of Weights.

Resp: Object of class "matrix". The number of rows of Resp must be identical to the length of
Trees, and its number of columns to the number of patients in the dataset used for estimating
the mixture model (ParentData).

CompleteMat: Object of class "matrix". When specified (when there are missing data) the
size of the CompleteMat must be equal to the size of the matrix used to estimate the model.

Star: Object of class "logical".

Trees: Object of class "list". The length of Trees equals the length of Weights.

Extends

Class "RtreemixData", directly.

Methods

CompleteMat signature(object = "RtreemixModel"): A method used for obtaining
the complete dataset, in case there were any missing measurements for some patients in the
dataset used to learn the mixture model.

Resp signature(object = "RtreemixModel"): A method for obtaining the matrix of
responsibilities for the trees to generate each of the samples in the dataset used for learning
the model (ParentData).

Star signature(object = "RtreemixModel"): A method for checking the presence of
a noise component in the mixture model (informative only for models with one tree compo-
nent).

Trees signature(object = "RtreemixModel"): A method for obtaining the tree com-
ponents of the mixture model as a list of directed graphNEL objects.

Weights signature(object = "RtreemixModel"): A method for obtaining the mixture
parameters (the weights of the trees in the model).

Weights<- signature(object = "RtreemixModel"): A method for replacing the value
of the slot Weights with a specified numeric vector. The components of this vector have
to sum up to one.

10 RtreemixModel-class

WeightsCI signature(object = "RtreemixModel"): A method for obtaining the weights
of the mixture parameters.

getData signature(object = "RtreemixModel"): A method for obtaining the ParentData
of the mixture model, i.e. the data used for learning the model.

getTree signature(object = "RtreemixModel", k = "numeric"): A method for
obtaining the k-th tree component of the mixture model as a directed graphNEL object.

numTrees signature(object = "RtreemixModel"): A method for obtaining the num-
ber of tree components building up the mixture model.

Author(s)

Jasmina Bogojeska

References

Learning multiple evolutionary pathways from cross-sectional data, N. Beerenwinkel et al.

See Also

RtreemixGPS-class, RtreemixStats-class, RtreemixData-class, RtreemixSim-
class, fit-methods, bootstrap-methods, generate-methods, comp.models, comp.trees

Examples

Generate a random RtreemixModel object with 2 components.
rand.mod <- generate(K = 2, no.events = 9, noise.tree = TRUE, prob = c(0.2, 0.8))
show(rand.mod)
plot(rand.mod) ## plot the tree components of the model
plot(rand.mod, k = 2) ## plot the second component of the model

Draw data from a specified mixture model.
draws <- sim(model = rand.mod, no.draws = 200)
show(draws)

Create an RtreemixModel object by fitting model to the drawn data.
mod <- fit(data = draws, K = 2, equal.edgeweights = TRUE, noise = TRUE)
show(mod)

See the values of the slots of the RtreemixModel object.
Weights(mod)
Resp(mod)
CompleteMat(mod)
Star(mod)
Trees(mod)
See data used for learning the model.
getData(mod)
See the number of tree components in the mixture model.
numTrees(mod)
See a specific tree component k.
getTree(object = mod, k = 2)
See the conditional probabilities assigned to edges of the second tree component.
edgeData(getTree(object = mod, k = 2), attr = "weight")
See the probability distribution encoded by the model on the set of all possible patterns.
distr <- distribution(model = mod)
distr

RtreemixSim-class 11

Get the probabilities.
distr$probability
See the probability distribution encoded by the model on the set of all possible patterns
calculated for given sampling mode, and input and output parameters.
distr1 <- distribution(model = mod, sampling.mode = "exponential", sampling.param = 1, output.param = 1)
distr1

Create a RtreemixModel and analyze its variance with the bootstrap method.
mod.boot <- bootstrap(data = draws, K = 2, equal.edgeweights = TRUE, B = 100)

See the confidence intervals for the mixture parameters (the weights).
WeightsCI(mod.boot)
See the confidence intervals of the conditional probabilities assigned to the edges.
edgeData(getTree(mod.boot, 2), attr = "ci")

RtreemixSim-class Class "RtreemixSim"

Description

This class contains data simulated from the RtreemixModel it extends together with their sam-
pling and waiting times. It also includes the sampling mode and the sampling parameter used for
the time simulation.

Objects from the Class

Objects can be created by calls of the form new("RtreemixSim", Model, SimPatterns,
SamplingMode, SamplingParam, WaitingTimes, SamplingTimes). The RtreemixSim
class specifies patterns (RtreemixData) simulated from the parent RtreemixModel together
with their waiting and sampling times resulting from the waiting time simulation along the branch-
ings in the parent model.

The Model is an RtreemixModel object used in the data and time simulation process. In other
words, this model is used for simulating patterns with their sampling and waiting times.

The SimPatterns is an RtreemixData object that contains the patterns simulated from the
given Model.

The SamplingMode is a character that specifies the sampling mode ("constant" or "exponen-
tial") used in the time simulations.

The SamplingParam is a numeric that specifies the sampling parameter corresponding to the
sampling mode given by SamplingMode.

The WaitingTimes is a numeric vector that specifies the waiting times for the simulated
patterns. Its length equals the number of patterns in SimPatterns.

The SamplingTimes is a numeric vector that specifies the sampling times for the simulated
patterns. Its length equals the number of patterns in SimPatterns.

Slots

SimPatterns: Object of class "RtreemixData".

SamplingMode: Object of class "character". It can have one of the two possible values:
"constant" or "exponential".

SamplingParam: Object of class "numeric".

12 RtreemixSim-class

WaitingTimes: Object of class "numeric". The length of WaitingTimes must be equal
to the number of patterns in SimPatterns.

SamplingTimes: Object of class "numeric". The length of SamplingTimesmust be equal
to the number of patterns in SimPatterns.

Extends

Class "RtreemixModel", directly. Class "RtreemixData", by class "RtreemixModel", dis-
tance 2.

Methods

SamplingMode signature(object = "RtreemixSim"): A method for obtaining the sam-
pling mode ("constant" or "exponential") used for the time simulations.

SamplingParam signature(object = "RtreemixSim"): A method for obtaining the
sampling parameter corresponding to the specified SamplingMode.

SamplingTimes signature(object = "RtreemixSim"): A method used for obtaining
the sampling times of the patterns in SimPatterns.

SimPatterns signature(object = "RtreemixSim"): A method used for obtaining the
patterns simulated from the parent model.

WaitingTimes signature(object = "RtreemixSim"): A method used for obtaining the
waiting times of the patterns in SimPatterns.

getModel signature(object = "RtreemixSim"): A method for obtaining the mixture
model used in the simulations.

noDraws signature(object = "RtreemixSim"): A method for obtaining the number
of simulated patterns, i.e. the size of SimPatterns.

Author(s)

Jasmina Bogojeska

References

Learning multiple evolutionary pathways from cross-sectional data, N. Beerenwinkel et al.

See Also

RtreemixGPS-class, RtreemixData-class, RtreemixModel-class, fit-methods,
sim-methods

Examples

Generate a random RtreemixModel object with 3 components and 9 genetic events.
rand.mod <- generate(K = 3, no.events = 9, noise.tree = TRUE, prob = c(0.2, 0.8))
show(rand.mod)

Create an RtreemixSim object by simulating patterns with their sampling and waiting times from a given mixture model.
sim.data <- sim(model = rand.mod, sampling.mode = "exponential", sampling.param = 1, no.sim = 200)
show(sim.data)

See the slots from the RtreemixSim object.
SimPatterns(sim.data)
SamplingMode(sim.data)

RtreemixStats-class 13

SamplingParam(sim.data)
WaitingTimes(sim.data)
SamplingTimes(sim.data)
See model.
getModel(sim.data)
See number of simulated patterns.
noDraws(sim.data)

RtreemixStats-class
Class "RtreemixStats"

Description

The RtreemixStats class contains the (weighted, log) likelihoods for a given dataset (specified
by the parent class) derived from the probability distribution induced by an underlying mutagenetic
trees mixture model.

Objects from the Class

Objects can be created by calls of the form new("RtreemixStats", Data, Model, LogLikelihoods,
WLikelihoods). The class RtreemixStats extends the RtreemixData class and speci-
fies (log, weighted) likelihoods for these data derived from a given RtreemixModel. The number
of the genetic events in the patterns from the given dataset (Data) has to be equal to the number of
genetic events in the branchings from the mixture model given by the slot Model. When having the
weighted likelihoods, one can easily derive the responsibilities of the model components in Model
for generating the patterns in the specified dataset (Data).

The Data is an RtreemixData object that specifies the patterns for which the likelihoods are
calculated.

The Model is an RtreemixModel object that specifies the mutagenetic trees mixture model used
for deriving the likelihoods of the given data.

The LogLikelihoods is a numeric vector that contains the log-likelihoods of the patterns in
Data. Its length equals the sample size, i.e. the number of patients in Data.

The WLikelihoods is a numeric matrix that specifies the weighted likelihoods of each pattern
in the given dataset Data. The number of columns in WLikelihoods equals the number of tree
components in Model and the number of rows equals the number of patients in Data.

Slots

Model: Object of class "RtreemixModel".

LogLikelihoods: Object of class "numeric". The length of LogLikelihoods must be
equal to the number of patients of the dataset specified with the parent "RtreemixData"
class.

WLikelihoods: Object of class "matrix". The number of rows must be equal to the sam-
ple size of the dataset specified with the parent "RtreemixData" class. The number of
columns must be identical with the number of tree components in the mixture model Model.

Extends

Class "RtreemixData", directly.

14 RtreemixStats-class

Methods

LogLikelihoods signature(object = "RtreemixStats"): A method for obtaining the
log-likelihoods of the patterns in the dataset specified with the parent "RtreemixData"
class.

Model signature(object = "RtreemixStats"): A method for obtaining the mutage-
netic trees mixture model used for deriving the likelihoods.

WLikelihoods signature(object = "RtreemixStats"): A method for obtaining the
weighted likelihoods of the patterns in the dataset specified with the parent "RtreemixData"
class.

getData signature(object = "RtreemixStats"): A method for obtaining the dataset
specified with the parent "RtreemixData" class.

getResp signature(object = "RtreemixStats"): A method for computing the matrix
of responsibilities for the trees to generate each of the samples in the parent dataset from their
weighted likelihoods WLikelihoods.

Author(s)

Jasmina Bogojeska

References

Learning multiple evolutionary pathways from cross-sectional data, N. Beerenwinkel et al.

See Also

RtreemixData-class, RtreemixModel-class, fit-methods, likelihoods-methods

Examples

Generate a random RtreemixModel object with 3 components and 9 genetic events.
mod <- generate(K = 3, no.events = 9, noise.tree = TRUE, prob = c(0.2, 0.8))
show(mod)

Draw a data sample from the model mod.
data <- sim(model = mod, no.draws = 400)

Create an RtreemixStats object.
mod.stat <- likelihoods(model = mod, data = data)
show(mod.stat)

See the slots from the RtreemixStats object.
Model(mod.stat)
LogLikelihoods(mod.stat)
WLikelihoods(mod.stat)
See data.
getData(mod.stat)
Calculate the responsibilities from the weighted likelihoods.
getResp(mod.stat)

bootstrap-methods 15

bootstrap-methods Method for fitting a mutagenetic trees mixture model and analyzing its
variance

Description

This method fits an RtreemixModel to a given dataset and then analyzes its variance with the
bootstrap method. The data and the number of trees K have to be specified.

Usage

bootstrap(data, K, ...)

Arguments

data An RtreemixData object giving the dataset used for learning the trees mix-
ture model.

K An integer larger than 0 specifying the number of branchings in the mixture
model.

... no.start.sol is an integer larger than 0 specifying the number of start-
ing solutions for the k-means algorithm. The default value is 100. eps is a
numeric giving the minimum conditional probability to include edge. The
default value is 0. weighing is a logical specifying whether to use spe-
cial weights log(Pr(v)) for the edges (root, v). The default value is FALSE.
equal.edgeweights is a logical specifying whether to use equal edge
weights in the noise component. The default value is TRUE. When you have
few data samples always use its default value (TRUE) to ensure nonzero prob-
abilities for all possible patterns (sets of events). seed is a positive integer
specifying the random generator seed. The default value is (-1) and then the
time is used as a random generator. B is an integer larger than 0 specifying
the number of bootstrap samples. Its default value is 1000. conf.interval
is a numeric specifying the Confidence level for the intervals. Its default value
is 0.05.

Value

The function returns an object from the class RtreemixModel. This is the mixture model learned
on the given data. Besides the edge weights it also contains their confidence intervals resulting
from the bootstrap analysis. Confidence intervals for the mixture parameters are also comupted and
available.

Note

The bootstrap examples are time consuming. They are commented out because of the time restric-
tions of the check of the package. For trying out the code please copy it and uncomment it.

Author(s)

Jasmina Bogojeska

16 Models

References

Learning multiple evolutionary pathways from cross-sectional data, N. Beerenwinkel et al.

See Also

RtreemixData-class, RtreemixModel-class, fit-methods

Examples

Create an RtreemixData object from a randomly generated RtreemixModel object.
#rand.mod <- generate(K = 2, no.events = 7, noise.tree = TRUE, prob = c(0.2, 0.8))
#data <- sim(model = rand.mod, no.draws = 300)

Create a RtreemixModel and analyze its variance with the bootstrap method.
#mod.boot <- bootstrap(data = data, K = 2, equal.edgeweights = TRUE, B = 10) ## time consuming computation

See the confidence intervals for the mixture parameters (the weights).
#WeightsCI(mod.boot)
See the confidence intervals of the conditional probabilities assigned to the edges.
#edgeData(getTree(mod.boot, 2), attr = "ci")

Models Functions for comparing the tree topologies of two mutagenetic trees
mixture models

Description

These functions implement a similarity measure for comparing the topologies of the trees of two
mixture models mixture1 and mixture2. comp.models chaaracterizes the similarity of the
models based on sum of the number of different edges of matched tree components (similarity
pairs). comp.models.levels quantifies the similarity of two mixture models by adding to the
edge ddifference of each similarity pair in the previously described sum the L1 distance of the level
vectors of the trees comprising the pair. A level vector can be associated to each tree component and
denotes the depth of each of the genetic events in the tree. It is necessary that the two models have
the same number of tree components build on the same number of genetic events. It is assumed that
the mixtures have at least two tree components.

Usage

comp.models(mixture1, mixture2)
comp.models.levels(mixture1, mixture2)

Arguments

mixture1 An RtreemixModel object specifying the first component for the similarity
calculation.

mixture2 An RtreemixModel object specifying the second component for the similar-
ity calculation. The number of tree components equals the one of mixture1.

Details

The value returned by the function comp.models is between 0 (no similarity) and 1 (identical
models).

comp.trees 17

Value

The functions return a numeric value that quantifies the similarity of the tree topologies of two
mixture models.

Author(s)

Jasmina Bogojeska

See Also

RtreemixModel-class, comp.trees, fit-methods, stability.sim

Examples

Generate two random RtreemixModel objects each with 3 components.
rand.mod1 <- generate(K = 3, no.events = 9, noise.tree = TRUE, prob =
c(0.2, 0.8))
rand.mod2 <- generate(K = 3, no.events = 9, noise.tree = TRUE, prob =
c(0.2, 0.8))

Compare the topologies of the tree components of the two randomly
generated models
comp.models(rand.mod1, rand.mod2)
comp.models.levels(rand.mod1, rand.mod2)

comp.trees Functions for quantifying the diversity of the nontrivial trees in a mu-
tagenetic trees mixture model

Description

These functions implement a similarity measure for comparing the topologies of the nontrivial tree
components of a specified mixture model, and thereby quantifying their diversity. All possible pairs
of nontrivial components are considered when computing the similarity. comp.trees uses the
sum of the number of different edges of all pairs for caracterizing the difference of the trees in the
model. comp.trees.levels uses the sum of the number of different edges of all pairs and
the corresponding L1 distances of their level vectors. The model must have at least two nontrivial
components.

Usage

comp.trees(model)
comp.trees.levels(model)

Arguments

model An RtreemixModel object.

Value

The functions return a numeric value that quantifies the similarity (or diversity) of the nontrivial
tree topologies of a given mixture models.

18 confIntGPS-methods

Author(s)

Jasmina Bogojeska

See Also

RtreemixModel-class, comp.models, fit-methods, stability.sim

Examples

Generate two random RtreemixModel objects each with 3 components.
mix1 <- generate(K = 3, no.events = 9, noise.tree = TRUE, prob = c(0.2, 0.8))
mix2 <- generate(K = 3, no.events = 9, noise.tree = TRUE, prob = c(0.2, 0.8))
Inspect the diversity of the nontrivial tree components in a given model
using the number of distinct edges and the levels of the events in
the treesas dissimilarity measure.
comp.trees.levels(model = mix1)
comp.trees.levels(model = mix2)

confIntGPS-methods Method for calculating GPS values and their 95% bootstrap confi-
dence intervals

Description

The method first calculates the genetic progression score (GPS) for the patterns in a given dataset
data based on a fitted mutagenetic trees mixture model with K components. The data and K
have to be specified. Then, it derives a 95% confidence intervals for the GPS values with bootstrap
analysis.

Usage

confIntGPS(data, K, ...)

Arguments

data An RtreemixData object containing the samples (patterns of genetic events)
for which the GPS values and their bootstrap confidence intervals are to be cal-
culated. The number of genetic events should NOT be greater than 20.

K An integer larger than 0 specifying the number of branchings in the mixture
model.

... sampling.mode is a character that specifies the sampling mode ("con-
stant" or "exponential") used in the waiting time simulations. Its default value is
"exponential". sampling.param is a numeric that specifies the sampling
parameter corresponding to the sampling mode given by sampling.mode.
Its default value is 1. no.sim is an integer larger than 0 giving the number
of iterations for the waiting time simulation. Its default values is 10000. B is
an integer larger than 0 specifying the number of bootstrap samples used in
the bootstrap analysis. Its default value is 1000. equal.star is a logical
specifying whether to use equal edge weights in the noise component. The de-
fault value is TRUE. When you have few data samples always use its default
value (TRUE) to ensure nonzero probabilities for all possible patterns (sets of
events).

distribution-methods 19

Value

The function returns an object from the RtreemixGPS class that containes the calculated GPS
values, their 95% confidence intervals, the model used for the computation, the data, and so on
(see RtreemixGPS-class). The GPS values are represented as a numeric vector with length
equal to the number of samples in data. Their corresponding confidence intervals are given in a
matrix with two columns.

Note

The data for which the GPS values and their corresponding confidence intervals are to be calculated
should not have more than 20 genetic events. The reason for this is that the number of all possible
patterns for which the GPS values are calculated during a computationally intensive simulations is
in this case 2^20. This demands too much memory. The GPS examples are time consuming.
They are commented out because of the time restrictions of the check of the package. For trying
out the code please copy it and uncomment it.

Author(s)

Jasmina Bogojeska

See Also

RtreemixGPS-class, gps-methods, RtreemixData-class, RtreemixModel-class,
fit-methods

Examples

Create an RtreemixData object from a randomly generated RtreemixModel object.
#rand.mod <- generate(K = 2, no.events = 7, noise.tree = TRUE, prob = c(0.2, 0.8))
#data <- sim(model = rand.mod, no.draws = 400)

Create an RtreemixGPS object by calculating GPS values for a given dataset
and their 95% confidence intervals using the bootstrap method.
#modGPS2 <- confIntGPS(data = data, K = 2, B = 100) ## time consuming computation
#show(modGPS2)

See the GPS values for the object modGPS2 and their confidence intervals.
#GPS(modGPS2)
#gpsCI(modGPS2)

See data.
#getData(modGPS2)

distribution-methods
Method for generating the (scaled) probablility distribution induced
with a given mutagenetic trees mixture model

Description

These functions generate the probability distribution induced with a given mutagenetic trees mixture
model model on the space of all possible patterns of genetic events. The model has to be specified.
The sampling mode and the parameters for the sampling times of the observed input and output
probabilities are optional. The number of genetic events in the model cannot exceed 30.

20 distribution-methods

Usage

distribution(model, sampling.mode, sampling.param, output.param)

Arguments

model An RtreemixModel object that encodes a probability distribution on the set
of all possible patterns.

sampling.mode
A character that specifies the sampling mode ("constant" or "exponential")
for the observed input and output probabilities.

sampling.param
A numeric that specifies the sampling parameter for the observed input prob-
abilities corresponding to the sampling mode given by sampling.mode.

output.param A numeric that specifies the sampling parameter for the observed output prob-
abilities corresponding to the sampling mode given by sampling.mode.

Value

The function returns a dataframe of all possible patterns with their corresponding probabili-
ties derived from the specified trees mixture model. When the sampling mode and the sampling
parameters (input and output) are specified their values are printed out.

Author(s)

Jasmina Bogojeska

References

Learning multiple evolutionary pathways from cross-sectional data, N. Beerenwinkel et al.

See Also

RtreemixModel-class, fit-methods

Examples

Generate a random RtreemixModel object with 3 components.
mod <- generate(K = 3, no.events = 8, noise.tree = TRUE, prob = c(0.2, 0.8))
show(mod)

See the probability distribution encoded by the model on the set of all possible patterns.
distr <- distribution(model = mod)
distr

Get the probabilities.
distr$probability

See the probability distribution encoded by the model on the set of all possible patterns
calculated for given sampling mode, and corresponding input and output parameters.
distr1 <- distribution(model = mod, sampling.mode = "exponential", sampling.param = 1, output.param = 1)
distr1

fit-methods 21

fit-methods Method for fitting mutagenetic trees mixture model to a given dataset

Description

Function for fitting a mutagenetic trees mixture model to a given dataset data. The dataset and the
number of trees K have to be specified. The function estimates K-oncogenetic trees mixture model
from the specified data by using an EM-like learning algorithm. The first tree component of the
model has a star topology and is referred to as the noise component.

Usage

fit(data, K, ...)

Arguments

data An RtreemixData object giving the dataset used for learning the trees mix-
ture model.

K An integer larger than 0 specifying the number of branchings in the mixture
model.

... no.start.sol is an integer larger than 0 specifying the number of start-
ing solutions for the k-means algorithm. The default value is 100. eps is a
numeric giving the minimum conditional probability to include edge. The
default value is 0.01. weighing is a logical specifying whether to use
special weights log(Pr(v)) for the edges (root, v). The default value is FALSE.
equal.edgeweights is a logical specifying whether to use equal edge
weights in the noise component. The default value is TRUE. When you have few
data samples always use its default value (TRUE) to ensure nonzero probabilities
for all possible patterns (sets of events). seed is a positive integer specify-
ing the random generator seed. The default value is (-1) and then the time is
used as a random generator. noise is a logical indicating the presence of
a noise (star) component in the fitted mixture model. It is mostly relevant for
models with a single tree component, since it is assumed that mixture models
with at least two components always have the noise as a first component.

Details

When K = 1 and noise = FALSE a single mutagenetic tree is fit to the data. When K = 1 and noise
= TRUE a star mutagenetic tree is fit to the data. If K > 1 the first mutagenetic tree is always the
star, i.e. the case K > 1 and noise = FALSE is not possible.

Value

The method returns an RtreemixModel object that represents the K-trees mixture model learned
from the given dataset.

Note

When you have too few data samples always use the default value TRUE for the equal.edgeweights.
Like this you make sure that all possible patterns (sets of events) have non-zero probabilities. If they
don’t the fitting procedure will not be completed and you will get an error!

22 generate-methods

Author(s)

Jasmina Bogojeska

References

Learning multiple evolutionary pathways from cross-sectional data, N. Beerenwinkel et al.

See Also

RtreemixData-class, RtreemixModel-class, generate-methods, bootstrap-
methods, confIntGPS-methods

Examples

Create an RtreemixData object from a randomly generated RtreemixModel object.
rand.mod <- generate(K = 3, no.events = 9, noise.tree = TRUE, prob = c(0.2, 0.8))
data <- sim(model = rand.mod, no.draws = 300)
show(data)

Create an RtreemixModel object by fitting model to the given data.
mod <- fit(data = data, K = 3, equal.edgeweights = TRUE, noise = TRUE)
show(mod)
See the number of tree components in the mixture model.
numTrees(mod)
See the weights of the branchings from the fitted mixture model.
Weights(mod)
See a specific tree component k.
getTree(object = mod, k = 2)

generate-methods Method for generating a random mutagenetic trees mixture model

Description

Function for generating a random mutagenetic mixture model. Each tree component from the model
is drawn uniformly at random from the tree topology space by using the Pr\"ufer encoding of trees.
The number of tree components and the number of genetic events have to be specified.

Usage

generate(K, no.events, ...)

Arguments

K An integer larger than 0 specifying the number of branchings in the mixture
model.

no.events An integer larger than 0 specifying the number of genetic events in the mix-
ture model.

get.tree.levels 23

... noise.tree is a logical indicating the presence of a noise (star) compo-
nent in the random mixture model. The default value is TRUE. equal.edgeweights
is a logical specifying whether to use equal edge weights in the noise com-
ponent. The default value is TRUE. prob is a numeric vector of length 2
specifying the boundaries for the edge weights of the randomly generated trees.
The first component of the vector (the lower boundary) must be smaller than the
second component (the upper boundary). The default value is (0.0, 1.0). seed
is a positive integer specifying the random generator seed. The default value
is (-1) and then the time is used as a random generator.

Value

The method returns an RtreemixModel object that represents the randomly generated K-trees
mixture model.

Author(s)

Jasmina Bogojeska

References

Beweis eines Satzes \"uber Permutationen, H. Pr\"ufer; Learning multiple evolutionary pathways
from cross-sectional data, N. Beerenwinkel et al.; Model Selection for Mixtures of Mutagenetic
Trees, Yin et al.

See Also

RtreemixModel-class

Examples

Generate a random RtreemixModel object with 3 components and 9 genetic events.
rand.mod <- generate(K = 3, no.events = 9, noise.tree = TRUE, prob = c(0.2, 0.8))
show(rand.mod)

get.tree.levels Function for constructing level vectors

Description

Function that assignes to each node the level at which that node is in a specific tree (tree.num)
of the mutagenetic trees mixture model mixture. The start.val is the number assigned to
the events pruned from the tree. This usually is the maximum depth of the tree with which the tree
specified with tree.num will be compared.

Usage

get.tree.levels(mixture, tree.num, start.val)

24 gps-methods

Arguments

mixture An object of the class RtreemixModel.

tree.num A numeric specifying the tree component from mixture used for creating
the level vector.

start.val A numeric specifying the number assigned to the pruned events.

Value

The function returns a named numeric vector. Its length equals the number of genetic events
in mixture minus one (for the initial null event which is always on level 0). The vector names
correspond to the names of the genetic events and each vector component gives the level at which
the respective event is in the num.tree tree of mixture.

Author(s)

Jasmina Bogojeska

See Also

comp.models, comp.trees, stability.sim, RtreemixModel-class, fit-methods

Examples

Generate two random RtreemixModel objects each with 3 components.
rand.mod <- generate(K = 3, no.events = 9, noise.tree = TRUE, prob =
c(0.2, 0.8))

Get the tree levels of the 2nd component of the model rand.mod.
get.tree.levels(mixture = rand.mod, tree.num = 2, start.val = 10)

gps-methods Methods for predicting the GPS of given dataset by using a given mu-
tagenetic trees mixture model

Description

These functions compute the genetic progression score (GPS) of each sample in the given data
by performing a waiting time simulation along the branchings of the mixture model model. The
model has to be specified. If a dataset is missing a GPS for all possible patterns is calculated. The
number of events of the samples in data equals the number of genetic events in the model.

Usage

gps(model, data, ...)

gps-methods 25

Arguments

model An object of the class RtreemixModel specifying the mutagenetic trees mix-
ture model used for deriving the GPS values. The model should NOT have more
than 20 genetic events.

data An RtreemixData object or a 0-1 matrix containing the samples (patterns
of genetic events) for which the GPS values are to be calculated. The length of
each of them has to be equal to the number of genetic events in the model.

... sampling.mode is a character that specifies the sampling mode ("con-
stant" or "exponential") used in the waiting time simulations. Its default value is
"exponential". sampling.param is a numeric that specifies the sampling
parameter corresponding to the sampling mode given by sampling.mode. Its
default value is 1. no.sim is an integer larger than 0 giving the number of
iterations for the waiting time simulations. Its default value is 10. seed is a
positive integer specifying the random generator seed. Its default value is
(-1) and then the time is used as a random generator.

Value

The function returns an object from the RtreemixGPS class that containes the calculated GPS
values, the model used for the computation, the data, and so on (see RtreemixGPS-class).
The GPS values are represented as a numeric vector with length equal to the number of samples
in data.

Methods

model = "RtreemixModel", data = "RtreemixData", ... A method for calculating the GPS val-
ues of the data given as RtreemixData object.

model = "RtreemixModel", data = "matrix", ... A method for calculating the GPS values of the
data given as 0-1 matrix.

model = "RtreemixModel", data = "missing", ... A method for calculating the GPS values of the
set of all possible patterns.

Note

The mixture model used for deriving the GPS values should not have more than 20 genetic events.
The reason for this is that the number of all possible patterns for which the GPS values are calculated
during a computationally intensive simulations is in this case 2^20. This demands too much
memory. The GPS examples are time consuming. They are commented out because of the time
restrictions of the check of the package. For trying out the code please copy it and uncomment it.

Author(s)

Jasmina Bogojeska

References

Estimating cancer survival and clinical outcome based on genetic tumor progression scores, J. Rah-
nenf\"urer et al.

See Also

RtreemixGPS-class, RtreemixData-class, RtreemixModel-class, fit-methods,
confIntGPS-methods

26 hiv.data

Examples

Create an RtreemixData object from a randomly generated RtreemixModel object.
#rand.mod <- generate(K = 2, no.events = 7, noise.tree = TRUE, prob = c(0.2, 0.8))
#data <- sim(model = rand.mod, no.draws = 400)

Create an RtreemixModel object by fitting model to the given data.
#mod <- fit(data = data, K = 2, equal.edgeweights = TRUE, noise = TRUE)
#show(mod)

Create an RtreemixGPS object by calculating the GPS for all possible patterns.
#modGPS.all <- gps(model = mod, no.sim = 1000) ## time consuming copmutations
#show(modGPS.all)

See the GPS values for all possible data.
#GPS(modGPS.all) ## time consuming copmutations

Create an RtreemixGPS object by calculating the GPS for the data based on the model mod.
#modGPS <- gps(model = mod, data = data, no.sim = 1000)
#show(modGPS) ## time consuming copmutations

See the GPS values for data.
#GPS(modGPS) ## time consuming copmutations

hiv.data Example of an RtreemixData object

Description

This data object was created by using the Stanford HIV Drug Resistance Database that comprises
genetic measurements of 364 HIV patients treated only with the drug zidovudine. The data contains
the six classical major zidovudine resistance mutations: M41L, D67N, K70R, L210W, T215F/Y,
and K219E/Q.

Usage

data(hiv.data)

References

Human immunodeficiency virus reverse transcriptase and protease sequence database, S. Rhee et
al.

See Also

RtreemixData-class

Examples

data(hiv.data)

print the object
hiv.data

kullback.leibler 27

kullback.leibler Kullback-Leibler divergence

Description

A function for calculating the Kullback-Leibler divergence between two discrete probability distri-
butions. The vectors specifying the probability distributions must have the same length.

Usage

kullback.leibler(p, q)

Arguments

p A numeric vector specifying the the first probability distribution. It has to
have the same length as q.

q A numeric vector specifying the the second probability distribution.

Value

The function returns the Kullback-Leibler divergence between the two specified descrete probability
distributions.

Warning

The function does not check whether the values in the vectors specifying the discrete probability
distributions sum up to one.

Author(s)

Jasmina Bogojeska

See Also

L1.dist, L2.norm, stability.sim

Examples

Define two discrete probability distributions with equal lengths.
p <- c(0.1, 0.2, 0.3, 0.4)
q <- c(0.2, 0.5, 0.1, 0.2)

Calculate the Kullback-Leibler divergence
between the probability distributions p and q
kullback.leibler(p, q)

28 likelihoods-methods

likelihoods-methods
Method for predicting the likelihoods of a set of samples with respect
to a mutagenetic trees mixture model

Description

This function predicts the (log, weighted) likelihoods of the samples in a given dataset according to
a given mutagenetic trees mixture model. The dataset and the model have to be specified.

Usage

S4 method for signature 'RtreemixModel,RtreemixData'
likelihoods(model, data)

Arguments

model An RtreemixModel object specifying the probabilistic framework in which
the likelihoods of the genetic patterns are computed.

data An RtreemixData object giving the samples for which the likelihoods are to
be calculated.

Value

This method returns an RtreemixStats object that containes the weghted- and log-likelihoods
of the samples in the given dataset with respect to the given mutagenetic trees mixture model.

Author(s)

Jasmina Bogojeska

References

Learning multiple evolutionary pathways from cross-sectional data, N. Beerenwinkel et al.

See Also

RtreemixData-class, RtreemixModel-class, fit-methods, distribution-methods

Examples

Create an RtreemixData object from a randomly generated RtreemixModel object.
rand.mod <- generate(K = 3, no.events = 9, noise.tree = TRUE, prob = c(0.2, 0.8))
data <- sim(model = rand.mod, no.draws = 300)
show(data)

Compute the likelihoods of the samples in data with respect to the model rand.mod
mod.stat <- likelihoods(model = rand.mod, data = data)
show(mod.stat)

plot-methods 29

plot-methods Method for visualizing mutagenetic trees mixture models

Description

Function for visualizing the tree components comprising a mutagenetic trees mixture model. The
user can also specify the fontSize used for the text labels of the nodes and the edges of the
plotted trees. Additionally, one can use the parameter k to plot a certain tree component from the
mixture model.

Usage

plot(x, y, ...)

Arguments

x An RtreemixModel object giving the mixture model that should be visual-
ized.

y Not specified.

... fontSize is the size of the text labels of the nodes and the edges of the tree
components. The default value is 8. k is a numeric giving the specific tree
component from the given mixture model that should be plotted. Its value can
be from one to the number of tree components in the given model.

Details

The value of k (that gives the tree component to be plotted) can take "integer" values from one
to the number of tree components.

Value

The method returns a plot of the mixture model model.

Author(s)

Jasmina Bogojeska

References

Learning multiple evolutionary pathways from cross-sectional data, N. Beerenwinkel et al.

See Also

RtreemixData-class, RtreemixModel-class, generate-methods

30 sim-methods

Examples

Generate a random RtreemixModel object.
rand.mod <- generate(K = 2, no.events = 7, noise.tree = TRUE, prob = c(0.2, 0.8))

Visualize it.
plot(rand.mod)

Increase the font size of the text labels in the plot.
plot(rand.mod, fontSize = 10)

Plot the second component of the mixture model rand.mod
plot(rand.mod, k = 2)

sim-methods Method for simulating data from a mutagenetic trees mixture model

Description

This function draws a certain number of patterns from a specified mutagenetic trees mixture model.
Thus, the mixture model has to be specified. When besides the mixture model also the sampling
mode and its respective sampling parameter are specified, this function simulates patterns together
with their waiting and sampling times from the respective model.

Usage

sim(model, sampling.mode, sampling.param, ...)

Arguments

model An object of the class RtreemixModel specifying the mutagenetic trees mix-
ture model used for drawing the patterns, or for simulating patterns with their
sampling and waiting times.

sampling.mode
A character that specifies the sampling mode ("constant" or "exponential")
used in the time simulations.

sampling.param
A numeric that specifies the sampling parameter corresponding to the sam-
pling mode given by sampling.mode.

... no.draws is an integer larger than zero specifying the number of patterns
that should be drawn from the given mixture model. no.sim is an integer
larger than 0 giving the number of iterations for the waiting time simulations.
Its default value is 10. seed is a positive integer specifying the random
generator seed. Its default value is (-1) and then the time is used as a random
generator.

Value

The function returns an RtreemixData object in the case when one wants to draw a certain
number of patterns from a given mixture model, i.e. when only the mutagenetic trees mixture model
and the number of patterns to be drawn are specified. When besides the model also the sampling
mode and the sampling parameter are given, the function returns an object from the RtreemixSim
class where the simulated patterns together with their sampling and waiting times are stored.

stability.sim 31

Author(s)

Jasmina Bogojeska

References

Learning multiple evolutionary pathways from cross-sectional data, N. Beerenwinkel et al.

See Also

RtreemixSim-class, RtreemixModel-class, RtreemixData-class

Examples

Create a random RtreemixModel object with 3 branchings and 9 genetic events.
rand.mod <- generate(K = 3, no.events = 9, noise.tree = TRUE, prob = c(0.2, 0.8))

Draw 300 samples from the randomly generated model rand.mod
data <- sim(model = rand.mod, no.draws = 300)
show(data)

Create an RtreemixSim object by simulating patterns with their sampling and waiting times from a given mixture model.
sim.data <- sim(model = rand.mod, sampling.mode = "exponential", sampling.param = 1, no.sim = 100)
show(sim.data)
WaitingTimes(sim.data)
SamplingTimes(sim.data)

stability.sim Stability analysis of the mutagenetic trees mixture model

Description

The function includes stability analysis on different levels of the mutagenetic trees mixture model:
GPS values, encoded probability distribution, tree topologies. Each analysis contains the values of
different similarity measures with their corresponding p-values.

Usage

stability.sim(no.trees = 3, no.events = 9, prob = c(0.2, 0.8),
no.draws = 300, no.rands = 100, no.sim = 1)

Arguments

no.trees An integer larger than 2 giving the number of tree components of the mixture
models considered in the stability analysis. The default value is 3.

no.events An integer larger than 0 giving the number of genetic events of the mixture
models considered in the stability analysis.

prob A numeric vector of length 2 specifying the boundaries for the edge weights
of the randomly generated trees. The first component of the vector (the lower
boundary) must be smaller than the second component (the upper boundary).
The default value is (0.2, 0.8).

no.draws An integer larger than 0 giving the size of the data sample drawn from the
random models used for learning the mixture models. The default value is 300.

32 stability.sim

no.rands An integer larger than 0 specifying the number of random models used for
calculating the p-values. The default value is 100.

no.sim An integer larger than 0 specifying the number of iterations used for the
waiting time simulations (a part of the GPS calculation). The default value is 1.

Details

The stability analysis is performed by first drawing a true mixture model uniformly at random from
the model space, and drawing a data sample from it. Afterwards, a mutagenetic trees model is
fitted to the drawn sample. The quality of the features derived from the model is then assessed by
comparing its quality with the quality of the corresponding features of a sufficient number of random
mixture models sampled uniformly from the model space. A p-value is obtained as a percentage of
cases in which the true model is closer to a random model tnah to the fitted model.

Value

comp1 Results from the stability analysis of the GPS values derived from a fitted mix-
ture model. A matrix with 4 columns and no.sim rows. The first two
columns give the similarity values and their corresponding p-values when the
Euclidian distance is used as a similarity measure for comparing the respective
GPS vectors. The last two columns depict the same results, but with the rank
correlation distance used as a similarity measure.

comp2 Results from the stability analysis of the probability distributions induced by
a fitted mixture model. A matrix with 6 columns and no.sim rows. Each
two columns give the values of the comparissons between the true and the fitted
probability distributions and their corresponding p-values, when using the co-
sine distance, the L1 distance, and the Kullback-Leibler divergence as similarity
measures.

comp3 Results from the stability analysis of the topologies of the tree components of a
fitted mixture model. A matrix with 2 columns and no.sim rows that give
the value of the comparisson of the topologies between the true and the corre-
sponding fitted model and their p-values. The similarity measure underlying the
number of different edges was used.

comp4 Similar to comp3. However, the similarity measure for comparing the tree
topologies besides the number of distinct edges includes the L1 distances of
the level vectors of events. See get.tree.levels.

comp5 A matrix where the columns correspond to the true GPS vector from each
simulation iteration. The matrix has no.sim columns and no.draws rows.

comp6 Same as comp5, but the matrix contains the fitted GPS values from each simu-
lation iteration.

comp7 A list where each component corresponds to the true models generated in
each simulation iteration. the length of the list is no.sim.

comp8 Same as comp7, but the list contains the fitted models.

Note

The stability simulation examples are time consuming. They are commented out because of the
time restrictions of the check of the package. For trying out the code please copy it and uncomment
it.

stability.sim 33

Author(s)

Jasmina Bogojeska

References

Learning multiple evolutionary pathways from cross-sectional data, N. Beerenwinkel et al.; Esti-
mating cancer survival and clinical outcome based on genetic tumor progression scores, J. Rah-
nenf\"urer et al.

See Also

RtreemixData-class, RtreemixModel-class, RtreemixGPS-class, RtreemixStats-
class, fit-methods, gps-methods, distribution-methods, generate-methods,
sim-methods, L1.dist, Pval.dist, comp.models, comp.trees, get.tree.levels,
kullback.leibler

Examples

Stability analysis - a toy example
#stability.sim(no.trees = 3, no.rands = 5, no.sim = 4, no.draws = 300)

Index

∗Topic classes
RtreemixData-class, 4
RtreemixGPS-class, 6
RtreemixModel-class, 8
RtreemixSim-class, 11
RtreemixStats-class, 13

∗Topic datagen
bootstrap-methods, 15

∗Topic datasets
hiv.data, 26

∗Topic distribution
distribution-methods, 19

∗Topic methods
bootstrap-methods, 15
confIntGPS-methods, 18
distribution-methods, 19
fit-methods, 21
generate-methods, 22
gps-methods, 24
likelihoods-methods, 28
plot-methods, 29
sim-methods, 30

∗Topic misc
comp.trees, 17
distances, 1
get.tree.levels, 23
kullback.leibler, 27
L2.norm, 2
Models, 16
Pval.dist, 3
sim-methods, 30
stability.sim, 31

∗Topic models
generate-methods, 22

∗Topic survival
gps-methods, 24

bootstrap (bootstrap-methods), 15
bootstrap,RtreemixData,numeric-method

(bootstrap-methods), 15
bootstrap-methods, 5, 10, 22
bootstrap-methods, 15

comp.models, 3, 10, 18, 24, 33

comp.models (Models), 16
comp.trees, 10, 17, 17, 24, 33
CompleteMat

(RtreemixModel-class), 8
CompleteMat,RtreemixModel-method

(RtreemixModel-class), 8
confIntGPS (confIntGPS-methods),

18
confIntGPS,RtreemixData,numeric-method

(confIntGPS-methods), 18
confIntGPS-methods, 7, 22, 25
confIntGPS-methods, 18
cosin.dist (distances), 1

Description (RtreemixData-class),
4

Description,RtreemixData-method
(RtreemixData-class), 4

Description<-
(RtreemixData-class), 4

Description<-,RtreemixData-method
(RtreemixData-class), 4

distances, 1
distribution

(distribution-methods), 19
distribution,RtreemixModel,character,numeric,numeric-method

(distribution-methods), 19
distribution,RtreemixModel,missing,missing,missing-method

(distribution-methods), 19
distribution-methods, 28, 33
distribution-methods, 19

euclidian.dist (distances), 1
Events (RtreemixData-class), 4
Events,RtreemixData-method

(RtreemixData-class), 4
Events<- (RtreemixData-class), 4
Events<-,RtreemixData-method

(RtreemixData-class), 4
eventsNum (RtreemixData-class), 4
eventsNum,RtreemixData-method

(RtreemixData-class), 4

fit (fit-methods), 21

34

INDEX 35

fit,RtreemixData,numeric-method
(fit-methods), 21

fit-methods, 5, 7, 10, 12, 14, 16–20, 24,
25, 28, 33

fit-methods, 21

generate (generate-methods), 22
generate,numeric,numeric-method

(generate-methods), 22
generate-methods, 10, 22, 29, 33
generate-methods, 22
get.tree.levels, 23, 32, 33
getData (RtreemixGPS-class), 6
getData,RtreemixGPS-method

(RtreemixGPS-class), 6
getData,RtreemixModel

(RtreemixModel-class), 8
getData,RtreemixModel-method

(RtreemixModel-class), 8
getData,RtreemixStats

(RtreemixStats-class), 13
getData,RtreemixStats-method

(RtreemixStats-class), 13
getModel (RtreemixSim-class), 11
getModel,RtreemixSim-method

(RtreemixSim-class), 11
getResp (RtreemixStats-class), 13
getResp,RtreemixStats-method

(RtreemixStats-class), 13
getTree (RtreemixModel-class), 8
getTree,RtreemixModel,numeric-method

(RtreemixModel-class), 8
GPS (RtreemixGPS-class), 6
gps (gps-methods), 24
GPS,RtreemixGPS-method

(RtreemixGPS-class), 6
gps,RtreemixModel,matrix-method

(gps-methods), 24
gps,RtreemixModel,missing-method

(gps-methods), 24
gps,RtreemixModel,RtreemixData-method

(gps-methods), 24
gps-methods, 7, 19, 33
gps-methods, 24
gpsCI (RtreemixGPS-class), 6
gpsCI,RtreemixGPS-method

(RtreemixGPS-class), 6

hiv.data, 26

initialize,RtreemixData-method
(RtreemixData-class), 4

initialize,RtreemixGPS-method
(RtreemixGPS-class), 6

initialize,RtreemixModel-method
(RtreemixModel-class), 8

initialize,RtreemixSim-method
(RtreemixSim-class), 11

initialize,RtreemixStats-method
(RtreemixStats-class), 13

kullback.leibler, 1, 3, 27, 33

L1.dist, 2, 3, 27, 33
L1.dist (distances), 1
L2.norm, 1, 2, 27
likelihoods

(likelihoods-methods), 28
likelihoods,RtreemixModel,RtreemixData-method

(likelihoods-methods), 28
likelihoods-methods, 14
likelihoods-methods, 28
LogLikelihoods

(RtreemixStats-class), 13
LogLikelihoods,RtreemixStats-method

(RtreemixStats-class), 13

Model (RtreemixGPS-class), 6
Model,RtreemixGPS-method

(RtreemixGPS-class), 6
Model,RtreemixStats

(RtreemixStats-class), 13
Model,RtreemixStats-method

(RtreemixStats-class), 13
Models, 16

noDraws (RtreemixSim-class), 11
noDraws,RtreemixSim

(RtreemixSim-class), 11
noDraws,RtreemixSim-method

(RtreemixSim-class), 11
numTrees (RtreemixModel-class), 8
numTrees,RtreemixModel-method

(RtreemixModel-class), 8

Patients (RtreemixData-class), 4
Patients,RtreemixData-method

(RtreemixData-class), 4
Patients<- (RtreemixData-class), 4
Patients<-,RtreemixData-method

(RtreemixData-class), 4
plot (plot-methods), 29
plot,RtreemixModel,missing-method

(plot-methods), 29

36 INDEX

plot,RtreemixModel-method,
missing-method
(RtreemixModel-class), 8

plot-methods, 29
print,RtreemixData-method

(RtreemixData-class), 4
print,RtreemixGPS-method

(RtreemixGPS-class), 6
print,RtreemixModel-method

(RtreemixModel-class), 8
print,RtreemixSim-method

(RtreemixSim-class), 11
print,RtreemixStats-method

(RtreemixStats-class), 13
Pval.dist, 3, 33

rank.cor.dist (distances), 1
Resp (RtreemixModel-class), 8
Resp,RtreemixModel-method

(RtreemixModel-class), 8
RtreemixData-class, 7, 10, 12, 14, 16,

19, 22, 25, 26, 28, 29, 31, 33
RtreemixData-class, 4
RtreemixGPS-class, 5, 10, 12, 19, 25, 33
RtreemixGPS-class, 6
RtreemixModel-class, 5, 7, 12, 14,

16–20, 22–25, 28, 29, 31, 33
RtreemixModel-class, 8
RtreemixSim-class, 10, 31
RtreemixSim-class, 11
RtreemixStats-class, 5, 10, 33
RtreemixStats-class, 13

Sample (RtreemixData-class), 4
Sample,RtreemixData-method

(RtreemixData-class), 4
sampleSize (RtreemixData-class), 4
sampleSize,RtreemixData-method

(RtreemixData-class), 4
SamplingMode (RtreemixGPS-class),

6
SamplingMode,RtreemixGPS-method

(RtreemixGPS-class), 6
SamplingMode,RtreemixSim

(RtreemixSim-class), 11
SamplingMode,RtreemixSim-method

(RtreemixSim-class), 11
SamplingParam

(RtreemixGPS-class), 6
SamplingParam,RtreemixGPS-method

(RtreemixGPS-class), 6
SamplingParam,RtreemixSim

(RtreemixSim-class), 11

SamplingParam,RtreemixSim-method
(RtreemixSim-class), 11

SamplingTimes
(RtreemixSim-class), 11

SamplingTimes,RtreemixSim-method
(RtreemixSim-class), 11

show,RtreemixData-method
(RtreemixData-class), 4

show,RtreemixGPS-method
(RtreemixGPS-class), 6

show,RtreemixModel-method
(RtreemixModel-class), 8

show,RtreemixSim-method
(RtreemixSim-class), 11

show,RtreemixStats-method
(RtreemixStats-class), 13

sim (sim-methods), 30
sim,RtreemixModel,character,numeric-method

(sim-methods), 30
sim,RtreemixModel,missing,missing-method

(sim-methods), 30
sim-methods, 12, 33
sim-methods, 30
SimPatterns (RtreemixSim-class),

11
SimPatterns,RtreemixSim-method

(RtreemixSim-class), 11
stability.sim, 1, 3, 17, 18, 24, 27, 31
Star (RtreemixModel-class), 8
Star,RtreemixModel-method

(RtreemixModel-class), 8

Trees (RtreemixModel-class), 8
Trees,RtreemixModel-method

(RtreemixModel-class), 8

WaitingTimes (RtreemixSim-class),
11

WaitingTimes,RtreemixSim-method
(RtreemixSim-class), 11

Weights (RtreemixModel-class), 8
Weights,RtreemixModel-method

(RtreemixModel-class), 8
Weights<- (RtreemixModel-class), 8
Weights<-,RtreemixModel-method

(RtreemixModel-class), 8
WeightsCI (RtreemixModel-class), 8
WeightsCI,RtreemixModel-method

(RtreemixModel-class), 8
WLikelihoods

(RtreemixStats-class), 13
WLikelihoods,RtreemixStats-method

(RtreemixStats-class), 13

	distances
	L2.norm
	Pval.dist
	RtreemixData-class
	RtreemixGPS-class
	RtreemixModel-class
	RtreemixSim-class
	RtreemixStats-class
	bootstrap-methods
	Models
	comp.trees
	confIntGPS-methods
	distribution-methods
	fit-methods
	generate-methods
	get.tree.levels
	gps-methods
	hiv.data
	kullback.leibler
	likelihoods-methods
	plot-methods
	sim-methods
	stability.sim
	Index

