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Abstract

The GSVA package implements a non-parametric unsupervised method, called Gene Set Variation
Analysis (GSVA), for assessing gene set enrichment (GSE) in gene expression microarray data. In
contrast to most GSE methods, GSVA performs a change in coordinate systems, transforming the
data from a gene by sample matrix to a gene set by sample matrix. Thereby allowing for the
evaluation of pathway enrichment for each sample. This transformation is done without the use
of a phenotype, thus facilitating very powerful and open-ended analyses in a now pathway centric
manner. In this vignette we illustrate how to use the GSVA package to perform some of these analyses
using published microarray data already pre-processed and stored in the companion experimental
data package GSVAdata.

1 Introduction

Gene set enrichment analysis (GSEA) (see Mootha et al., 2003; Subramanian et al., 2005) is a method
designed to assess the concerted behavior of functionally related genes forming a set, between two well-
defined groups of samples. Because it does not rely on a “gene list” of interest but on the entire ranking
of genes, GSEA has been shown to provide greater sensitivity to find gene expression changes of small
magnitude that operate coordinately in specific sets of functionally related genes. However, due to
the reduced costs in genome-wide gene-expression assays, data is being produced under more complex
experimental designs that involve multiple RNA sources enriched with a wide spectrum of phenotypic
and/or clinical information. The Cancer Genome Atlas (TCGA) project (see http://cancergenome.

nih.gov) and the data deposited on it constitute a canonical example of this situation.
To facilitate the functional enrichment analysis of this kind of data, we developed Gene Set Variation

Analysis (GSVA) which allows one to assess the underlying pathway activity variation by transform-
ing the gene by sample matrix into a gene-set by sample matrix without the a priori knowledge of
the experimental design. The method is both non-parametric and unsupervised, and bypasses the con-
ventional approach of explicitly modeling phenotypes within enrichment scoring algorithms. Focus is
therefore placed on the relative enrichment of pathways across the sample space rather than the absolute
enrichment with respect to a single phenotype. The value of this approach is that it permits the use
of traditional analytical methods such as classification, survival, clustering, and correlation analysis in
a pathway focused manner. It also facilitates sample-wise comparisons between pathways and other
complex data types such as microRNA expression or binding data, copy-number variation (CNV) data,
or single nucleotide polymorphisms (SNPs). However, for case-control or single phenotype experiments,
or where the sample size is not sufficiently large (< 30), other GSE methods that explicitly include
the phenotype in their model are more likely to provide greater statistical power to detect functional
enrichment.

In the rest of this vignette we describe briefly the methodology behind GSVA, give an overview of
the functions implemented in the package and show a few applications. The interested reader is referred
to (Hänzelmann et al., 2011) for more comprehensive explanations and more complete data analysis
examples with GSVA, as well as for citing GSVA if you use it in your own work.

2 GSVA enrichment scores

GSVA enrichment scores are calculated from two main inputs: a matrix X = {xij}p×n of expression val-
ues for p genes through n samples, where typically p� n, and a collection of gene sets Γ = {γ1, . . . , γm}.
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We shall denote by xi the expression profile of the i-th gene, by xij the specific expression value of the
i-th gene in the j-th sample, and by γk the subset of row indices in X such that γk ⊂ {1, . . . p} defines
a set of genes forming a pathway or some other functional unit. Let |γk| be the number of genes in the
gene set.

The first step in the calculation consists of evaluating whether a gene i is highly or lowly expressed in
sample j in the context of the sample population distribution, with an expression-level statistic calculated
as follows. First, for each gene expression profile xi = {xi1, . . . , xin}, a non-parametric kernel estimation
of its cumulative density function is performed using a Gaussian kernel (Silverman, 1986, pg. 148):

F̂hi(xij) =
1

n

n∑
k=1

∫ xij−xik
hi

−∞

1√
2π
e−

t2

2 dt . (1)

where hi is the gene-specific bandwidth parameter that controls the resolution of the kernel estimation
and is taken as hi = si/4, where si is the sample standard deviation of the i-th gene. Second, the
expression-level statistic is calculated as logarithm of the relative likelihood, or odds, that the i-th gene
is expressed in sample j:

zij = log

(
F̂hi

(xij)

1− F̂hi(xij)

)
. (2)

The clearest context for differential gene expression arises under a bi-modal distribution of the data.
Here, zij ’s corresponding to the lower mode will have a large negative statistic, higher modes will have
a large positive statistic, and samples between the two modes will have zij ’s at or near zero. Genes with
uniform or unimodal population distributions do not preclude large negative or positive expression-level
statistics, i.e. xij lying in the tail of a distribution. To dampen the effect of potential outliers, the
expression-level statistics zij are first converted to a rank statistic z(i)j = p/2− rankj(zij) for each j-th
sample, before evaluating the enrichment scores.

We assess the enrichment score similarity to the GSEA method Subramanian et al. (2005) using a
Kolmogorov-Smirnov (K-S) like random walk statistic:

νjk(`) =

∑`
i=1 |z(i)j |τI(g(i) ∈ γk)∑p
i=1 |z(i)j |τI(g(i) ∈ γk)

−
∑`
i=1 I(g(i) 6∈ γk)

p− |γk|
, (3)

where τ is a parameter describing the weight of the tail in the random walk (default τ = 1), γk is the
k-th gene set, I(g(i) ∈ γk) is the indicator function on whether the i-th gene (the gene corresponding to
the i-th ranked expression-level statistic) is in gene set γk, |γk| is the number of genes in the k-th gene
set, and p is the number of genes in the data set.

Two approaches are possible for turning the K-S random walk statistic into an enrichment score (ES).
The first approach is the previously described maximum deviation method Subramanian et al. (2005)
where the ES for the j-th sample with respect to the k-th gene set is the maximum deviation of the
random walk from zero:

ESkj = νjk[arg max
`=1,..,p

|νjk(`)|]. (4)

For each gene set k, this approach produces a distribution of enrichment scores that is bi-modal. Within
the supervised paradigm, a “normalized” enrichment score could be obtained via a permutation of the
phenotypic labels; since we are operating without labels, we propose a second approach that produces
an ES distribution that is approximately normal :

ESkj = max(0, νjk(1), . . . , νjk(p)) + min(0, νjk(1), . . . , νjk(p)) (5)

This approach takes the magnitude difference between the largest positive and negative random walk
deviations, and has the effect of dampening out large enrichment scores if there is both a large positive
and negative deviation in the random walk. For analyses that require an enrichment score distribution
approximately normal, we recommend this alternative method.

2



3 Overview of the package

The GSVA package implements the methodology described in the previous section in the function gsva()

which requires two main input arguments: the gene expression data and a collection of gene sets. The
expression data can be provided either as a matrix object of genes (rows) by sample (columns) expression
values, or as an ExpressionSet object. The collection of gene sets can be provided either as a list object
with names identifying gene sets and each entry of the list containing the gene identifiers of the genes
forming the corresponding set, or as a GeneSetCollection object as defined in the GSEABase package.

When the two main arguments are an ExpressionSet object and a GeneSetCollection object, the
gsva() function will first filter out from the gene sets those identifiers that do not match to the chip
annotation associated to the ExpressionSet object through the function mapIdentifiers() from the
GSEABase package. This means that both input arguments may specify features with different types of
identifiers, like Entrez IDs and probeset IDs, and the GSEABase package will take care to map them to
one another. After this first filtering step, it will perform again a second one on the gene sets where those
identifiers that do not match to the feature names in the ExpressionSet object will be also discarded.
If the expression data is given as a matrix object then only the latter filtering step will be taken by
the gsva() function and, therefore, it will be the responsibility of the user to have the same type of
identifiers in both the expression data and the gene sets.

After these automatic filtering steps, we may additionally filter out gene sets that do not meet a
minimum and/or maximum size specified through the optional arguments min.sz and max.sz which are
set by default to 1 and Inf, respectively. Finally, the gsva() function will carry out the calculations
specified in the previous section and return a gene-set by sample matrix of GSVA enrichment scores in
the form of a matrix object, if this was the class of the input expression data object or, otherwise, it will
return an ExpressionSet object inheriting all the corresponding phenotypic information from the input
data.

An important argument of the gsva() function is the flag mx.diff which is set to TRUE by default.
Under this default setting, GSVA enrichment scores are calculated using Equation 5 and therefore,
more amenable by analysis techniques that assume the data to be normally distributed. When setting
mx.diff=FALSE, then Equation 4 is employed, calculating enrichment in an analogous way to classical
GSEA which typically provides bi-modal distribution of GSVA enrichment scores for each gene.

Since the calculations for each gene set are independent from each other, the gsva() function offers
two possibilities to perform them in parallel. One consists of loading the library snow, which will enable
the parallelization of the calculations through a cluster of computers. In order to activate this option we
should specify in the argument parallel.sz the number of processors we want to use (default is zero
which means no parallelization is going to be employed). The other is possibility is loading the library
multicore and then the gsva() function will use the core processors of the computer where R is running.
If we want to limit gsva() in the number of core processors that is should use we can do it by specifying
such a value in the parallel.sz argument.

The other two functions of the GSVA package are filterGeneSets() and computeGeneSetOver-

laps() that serve to explicitly filter out gene sets by size and by pairwise overlap, respectively. Note
that the size filter can be also applied within the gsva() function call.

4 Applications

In this section we illustrate the following applications of GSVA:

• Functional enrichment between two subtypes of leukemia.

• Identification of molecular signatures in distinct glioblastoma subtypes.

• Meta-pathway analysis in the leukemia data.

Throughout this vignette we will use the C2 collection of literature curated gene sets that form part
of the Molecular Signatures Database (MSigDB) version 3.0. This particular collection of gene sets is
provided as a GeneSetCollection object called c2BroadSets in the companion experimental data package
GSVAdata, which stores these and other data employed in this vignette. These data can be loaded as
follows:
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> library(GSEABase)

> library(GSVAdata)

> data(c2BroadSets)

> c2BroadSets

where we observe that c2BroadSets contains 3272 gene sets. We also need to load the following additional
libraries:

> library(Biobase)

> library(genefilter)

> library(limma)

> library(RColorBrewer)

> library(graph)

> library(Rgraphviz)

> library(GSVA)

As a final setup step for this vignette, we will employ the cache() function from the Biobase package in
order to load some pre-computed results and speed up the building time of the vignette:

> cacheDir <- system.file("extdata", package = "GSVA")

> cachePrefix <- "cache4vignette_"

In order to enforce re-calculating everything, either the call to the cache() function should be replaced
by its first argument, or the following command should be written in the R console at this point:

> file.remove(paste(cacheDir, list.files(cacheDir,

+ pattern = cachePrefix), sep = "/"))

4.1 Functional enrichment

In this section we illustrate how to identify functionally enriched gene sets between two phenotypes. As
in most of the applications one starts by calculating GSVA enrichment scores and afterwards, in this case,
we will employ the linear modeling techniques implemented in the limma package to find the enriched
gene sets.

The data set we are going to use in this section corresponds to the microarray data from (Armstrong
et al., 2002) which consists of 37 different individuals with human acute leukemias, where 20 of them
had conventional childhood acute lymphoblastic leukemia (ALL) and the other 17 were affected with the
MLL (mixed-lineage leukemia gene) translocation. This leukemia data set is stored as an ExpressionSet

object called leukemia in the GSVAdata package and details on how the data was pre-processed can be
found on its help page. Enclosed with the RMA expression values we can find some metadata including
the main phenotype corresponding to the leukemia sample subtype.

> data(leukemia)

> leukemia_eset

ExpressionSet (storageMode: lockedEnvironment)

assayData: 12626 features, 37 samples

element names: exprs

protocolData

sampleNames: CL2001011101AA.CEL CL2001011102AA.CEL

... CL2001011152AA.CEL (37 total)

varLabels: ScanDate

varMetadata: labelDescription

phenoData

sampleNames: CL2001011101AA.CEL CL2001011102AA.CEL

... CL2001011152AA.CEL (37 total)

varLabels: subtype

varMetadata: labelDescription channel
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featureData: none

experimentData: use 'experimentData(object)'
Annotation: hgu95a

> head(pData(leukemia_eset))

subtype

CL2001011101AA.CEL ALL

CL2001011102AA.CEL ALL

CL2001011104AA.CEL ALL

CL2001011105AA.CEL ALL

CL2001011109AA.CEL ALL

CL2001011110AA.CEL ALL

> table(leukemia_eset$subtype)

ALL MLL

20 17

Let’s examine the variability of the expression profiles across samples by plotting the cumulative distri-
bution of IQR values as shown in Figure 1. About 50% of the probesets show very limited variability
across samples and, therefore, in the following non-specific filtering step we will filter out this fraction
from further analysis.

Figure 1: Empirical cumulative distribution of the interquartile range (IQR) of expression values in the
leukemia data. The vertical red bar is located at the 50% quantile value of the cumulative distribution.

We carry out a non-specific filtering step by discarding the 50% of the probesets with smaller vari-
ability, probesets without Entrez ID annotation, probesets whose associated Entrez ID is duplicated in
the annotation, and Affymetrix quality control probes:

> filtered_eset <- nsFilter(leukemia_eset, require.entrez = TRUE,

+ remove.dupEntrez = TRUE, var.func = IQR, var.filter = TRUE,

+ var.cutoff = 0.5, filterByQuantile = TRUE,

+ feature.exclude = "^AFFX")

> filtered_eset
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$eset

ExpressionSet (storageMode: lockedEnvironment)

assayData: 4408 features, 37 samples

element names: exprs

protocolData

sampleNames: CL2001011101AA.CEL CL2001011102AA.CEL

... CL2001011152AA.CEL (37 total)

varLabels: ScanDate

varMetadata: labelDescription

phenoData

sampleNames: CL2001011101AA.CEL CL2001011102AA.CEL

... CL2001011152AA.CEL (37 total)

varLabels: subtype

varMetadata: labelDescription channel

featureData: none

experimentData: use 'experimentData(object)'
Annotation: hgu95a

$filter.log

$filter.log$numDupsRemoved

[1] 2933

$filter.log$numLowVar

[1] 4409

$filter.log$numRemoved.ENTREZID

[1] 857

$filter.log$feature.exclude

[1] 19

> leukemia_filtered_eset <- filtered_eset$eset

The calculation of GSVA enrichment scores is performed in one single call to the gsva() function.
However, one should take into account that this function performs further non-specific filtering steps
prior to the actual calculations in order to, in one hand, match gene identifiers between gene sets and
gene expression values and, on the other hand, meet minimum and maximum gene-set size requirements
specified with the arguments min.sz and max.sz, respectively, which, in the call below, are set to 10 and
500 genes. Because we want to use limma on the resulting GSVA enrichment scores, we let the argument
mx.diff to its default TRUE value.

> cache(leukemia_es <- gsva(leukemia_filtered_eset,

+ c2BroadSets, min.sz = 10, max.sz = 500, verbose = FALSE)$es.obs,

+ dir = cacheDir, prefix = cachePrefix)

Here we show how to employ GSVA to identify gene sets that are differentially activated for a single
dichotomous phenotype. We use the MSigDB C2 version 3.0 database of gene sets Subramanian et al.
(2005) of curated pathways. We test whether there is a difference between the GSVA enrichment scores
from each pair of phenotypes using a simple linear model and moderated t-statistics computed by the
limma package using an empirical Bayes shrinkage method (see Smyth, 2004). We are going to examine
both, changes at gene level and changes at pathway level and since, as we shall see below, there are
plenty of them, we are going to employ the following stringent cutoffs to attain a high level of statistical
and biological significance:

> adjPvalueCutoff <- 0.001

> logFCcutoff <- log2(2)

where we will use the latter only for the gene-level differential expression analysis.
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> design <- model.matrix(~factor(leukemia_es$subtype))

> colnames(design) <- c("ALL", "MLLvsALL")

> fit <- lmFit(leukemia_es, design)

> fit <- eBayes(fit)

> allGeneSets <- topTable(fit, coef = "MLLvsALL",

+ number = Inf)

> DEgeneSets <- topTable(fit, coef = "MLLvsALL",

+ number = Inf, p.value = adjPvalueCutoff, adjust = "BH")

> res <- decideTests(fit, p.value = adjPvalueCutoff)

> summary(res)

ALL MLLvsALL

-1 2 7

0 2027 2006

1 4 20

Thus, there are 27 MSigDB C2 curated pathways that are differentially activated between MLL and ALL
at 0.1% FDR. When we carry out the corresponding differential expression analysis at gene level:

> logFCcutoff <- log2(2)

> design <- model.matrix(~factor(leukemia_eset$subtype))

> colnames(design) <- c("ALL", "MLLvsALL")

> fit <- lmFit(leukemia_filtered_eset, design)

> fit <- eBayes(fit)

> allGenes <- topTable(fit, coef = "MLLvsALL", number = Inf)

> DEgenes <- topTable(fit, coef = "MLLvsALL", number = Inf,

+ p.value = adjPvalueCutoff, adjust = "BH",

+ lfc = logFCcutoff)

> res <- decideTests(fit, p.value = adjPvalueCutoff,

+ lfc = logFCcutoff)

> summary(res)

ALL MLLvsALL

-1 0 72

0 0 4281

1 4408 55

Here, 127 genes show up as being differentially expressed with a minimum fold-change of 2 at 0.1% FDR.
These overall numbers of genes and pathways that change are better seen through the corresponding
volcano plots shown in Figure 2.

The signatures of both, the differentially activated pathways reported by the GSVA analysis and of
the differentially expressed genes are shown in Figures 3 and 4, respectively. The gene sets and pathways
reported in Figure 3 include many directly related to the ALL and MLL leukemias and, among the rest,
we could highlight, for instance, the Lysosome gene set since lysosomal enzyme abnormalities have been
reported to be involved in leukemias (Besley et al., 1983).

4.2 Molecular signature identification

In Verhaak et al. (2010) four subtypes of Glioblastoma multiforme (GBM) - proneural, classical, neural
and mesenchymal - were identified by the characterization of distinct gene-level expression patterns.
Using eight gene-set signatures specific to brain cell types - astrocytes, oligodendrocytes, neurons and
cultured astroglial cells - derived from murine models by Cahoy et al. (2008), we replicate the analysis of
Verhaak et al. (2010) by employing GSVA to transform the gene expression measurements into enrichment
scores for these eight gene sets, without taking the sample subtype grouping into account. We start by
loading and giving a first glance to the data, which forms part of the GSVAdata package:

> data(gbm_VerhaakEtAl)

> gbm_eset

7



Figure 2: Volcano plots for differential pathway activation (left) and differential gene expression (right)
in the leukemia data set.

ExpressionSet (storageMode: lockedEnvironment)

assayData: 11861 features, 173 samples

element names: exprs

protocolData: none

phenoData

rowNames: TCGA.02.0003.01A.01 TCGA.02.0010.01A.01

... TCGA.12.0620.01A.01 (173 total)

varLabels: subtype

varMetadata: labelDescription channel

featureData: none

experimentData: use 'experimentData(object)'
Annotation:

> head(featureNames(gbm_eset))

[1] "AACS" "FSTL1" "ELMO2" "CREB3L1" "RPS11"

[6] "PNMA1"

> table(gbm_eset$subtype)

Classical Mesenchymal Neural Proneural

38 56 26 53

> data(brainTxDbSets)

> sapply(brainTxDbSets, length)

astrocytic_up astrocytic_dn astroglia_up

85 15 88

astroglia_dn neuronal_up neuronal_dn

12 98 30

oligodendrocytic_up oligodendrocytic_dn

70 30

> lapply(brainTxDbSets, head)
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Figure 3: Heatmap of differentially activated pathways at 0.1% FDR in the Leukemia data set.

$astrocytic_up

[1] "GRHL1" "GPAM" "PAPSS2" "MERTK" "BTG1"

[6] "SLC46A1"

$astrocytic_dn

[1] "NPAL3" "ATP1A1" "FRMD5" "ASNS" "SEMA3E" "LPGAT1"

$astroglia_up

[1] "BST2" "SERPING1" "ACTA2" "C9orf167" "C1orf31"

[6] "ANXA4"

$astroglia_dn

[1] "PCDH8" "ATP8A1" "PHACTR3" "PCDH17" "CCDC28B"

[6] "TDG"

$neuronal_up

[1] "STXBP1" "JPH4" "CACNG3" "BRUNOL6" "CLSTN2"

[6] "FAM123C"

$neuronal_dn

[1] "DKK3" "LPHN2" "AHR" "NRP1" "MAP3K15"

[6] "GALNTL4"

$oligodendrocytic_up

[1] "DCT" "ZNF536" "GNG8" "ELOVL6" "NR2C1" "RCBTB1"
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Figure 4: Heatmap of differentially expressed genes with a minimum fold-change of 2 at 0.1% FDR in
the leukemia data set.

$oligodendrocytic_dn

[1] "DKK3" "LPHN2" "AHR" "NRP1" "MAP3K15"

[6] "GALNTL4"

GSVA enrichment scores for the gene sets contained in brainTxDbSets are calculated, in this case using
mx.diff=FALSE, as follows:

> gbm_es <- gsva(gbm_eset, brainTxDbSets, mx.diff = FALSE,

+ verbose = FALSE)$es.obs

Figure 5 shows the GSVA enrichment scores obtained for the up-regulated gene sets across the samples
of the four GBM subtypes. As expected, the neural class is associated with the neural gene set and
the astrocytic gene sets. The mesenchymal subtype is characterized by the expression of mesenchymal
and microglial markers, thus we expect it to correlate with the astroglial gene set. The proneural
subtype shows high expression of oligodendrocytic development genes, thus it is not surprising that the
oligodendrocytic gene set is highly enriched for ths group. Interestingly, the classical group correlates
highly with the astrocytic gene set. In summary, the resulting GSVA enrichment scores recapitulate
accurately the molecular signatures from Verhaak et al. (2010).

4.3 Meta-pathway analysis

In biological systems, pathways do not operate independently and can have diverse degrees of cross-
talk between them. We call here a meta-pathway analysis the identification of pathways that have a
highly-coordinated activity but whose gene sets have little or no overlap.
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Figure 5: Heatmap of GSVA scores for cell-type brain signatures from murine models (y-axis) across
GBM samples grouped by GBM subtype.

For the purpose of simplifying calculations in this vignette, we consider only a subset of the C2
MSigDB Gene Sets, concretely those belonging to the KEGG pathways:

> KEGGc2BroadSets <- c2BroadSets[grep("^KEGG", names(c2BroadSets))]

> KEGGc2BroadSets

GeneSetCollection

names: KEGG_GLYCOLYSIS_GLUCONEOGENESIS, KEGG_CITRATE_CYCLE_TCA_CYCLE, ..., KEGG_VIRAL_MYOCARDITIS (186 total)

unique identifiers: 55902, 2645, ..., 1981 (5267 total)

types in collection:

geneIdType: EntrezIdentifier (1 total)

collectionType: BroadCollection (1 total)

We calculate GSVA enrichment scores discarding gene sets with less than 10 genes and more than 500.
Note that we do not filter for variability here as we are not searching of differential pathway activation
and we do not do it either for probeset annotations since this step is taken when mapping probesets to
gene sets:

> leukemiaKEGG_es <- gsva(leukemia_eset, KEGGc2BroadSets,

+ min.sz = 10, max.sz = 500, mx.diff = TRUE,

+ verbose = FALSE)$es.obs

We are interested in those pathways that have little overlap between their sets of genes but are highly
correlated. For the purpose of applying such a filter we need to calculate the fraction of genes that overlap
between every pair of gene sets which is possible to do through the function computeGeneSetsOverlap():

> overlapMatrix <- computeGeneSetsOverlap(KEGGc2BroadSets,

+ leukemia_eset, min.sz = 10, max.sz = 500)

We can quickly obtain a network of cross-talk associations by calculating marginal pairwise correlations,
like Pearson correlation coefficients (PCCs), and selecting those pairs of pathways that are highly corre-
lated. Here below we select pathway associations with an absolute PCC |ρ| > 0.8 and a maximum gene
set overlap of 5%. We can see the selected pairs forming this network in Figure 6.

> pcc <- cor(t(exprs(leukemiaKEGG_es)))

> pcc[overlapMatrix > 0.05] <- 0

> pcc[lower.tri(pcc)] <- 0
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> diag(pcc) <- 0

> arrIdxs <- which(abs(pcc) > 0.8, arr.ind = TRUE)

> pccEdges <- data.frame(PWYi = featureNames(leukemiaKEGG_es)[arrIdxs[,

+ 1]], PWYj = featureNames(leukemiaKEGG_es)[arrIdxs[,

+ 2]], PCC = pcc[arrIdxs])

Figure 6: Network of cross-talk associations between KEGG pathways of the leukemia data set obtained
by selecting those associations with an absolute value of Pearson correlation |ρ| > 0.8 and a maximum
gene set overlap of 5%.

Some of the marginal pairwise associations in Figure 6 may be spurious, that is, indirectly mediated
by other pathways. In order to select direct (non-spurious) relationships we have carried out a Gaussian
graphical modeling (GGM) analysis of the cross-talk associations between pathways that follow from the
GSVA enrichment score data. A GGM analysis assumes that the data forms a multivariate normal sample
from a distribution N (µ,Σ) and that the underlying network can be represented by an undirected graph
G whose missing edges match the pattern of zeroes in the inverse covariance matrix Σ−1 (see Lauritzen,
1996). For this purpose we will employ the qpgraph library:

> library(qpgraph)

Since the dimension of the data with p =180 and n =37 precludes the application of classical GGM
techniques (Lauritzen, 1996, pg. 126) we will follow a limited-order correlation based approach described
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in (Castelo and Roverato, 2006, 2009). We start by estimating average non-rejection rates (Castelo
and Roverato, 2009) which are a measure of linear association over all marginal distributions of size
(q + 2) < n.

> cache(avgnrr <- qpAvgNrr(leukemiaKEGG_es, verbose = FALSE),

+ dir = cacheDir, prefix = cachePrefix)

We do not consider the associations involving those pairs of pathways whose gene sets overlap by more
than 5%:

> avgnrr[overlapMatrix > 0.05] <- NA

By considering some cutoff on the average non-rejection rate we could directly obtain an estimated q-order
partial correlation graph, or qp-graph, denoted by Ĝ(q) and which would constitute an approximation to
the underlying undirected graph G. However, following the model-based strategy proposed in (Castelo
and Roverato, 2006), we will first examine the maximum clique size, denoted by w(G) and also known
as the clique number of G, of the possible resulting graphs as function of different cutoffs applied to the
average non-rejection rate. This can be done by using the function qpClique() whose result is displayed
in Figure 7

> qpclq <- qpClique(avgnrr, N = dim(leukemiaKEGG_es)[2])

Figure 7: Clique number as function of the average non-rejection rate. The red line indicates the sample
size of the leukemia data set (n =37) and next to each point the graph density is indicated.

This function also returns the largest cutoff β∗, among those considered in the plot, whose resulting
estimated graph Ĝ has w(Ĝ) < n. In this case β∗ =0.8 and using this cutoff we obtain a resulting
qp-graph Ĝ(q) which has w(Ĝ(q)) =13 as shown here below:

> g <- qpGraph(avgnrr, threshold = qpclq$threshold)

> w <- qpCliqueNumber(g, verbose = FALSE)

> w

[1] 13

Since w(Ĝ(q)) =13 is smaller than n =37 there is a chance that the maximum likelihood estimate (MLE)
of the sample covariance matrix S exists (Lauritzen, 1996, pg. 133), under the restrictions imposed by

13



the qp-graph Ĝ(q). Once a MLE of S is obtained, its inverse Σ−1 = K = {κij} can be calculated and,
therefore, the corresponding partial correlation coefficients (PACs) as follows:

ρij.R =
−κij√
κii κjj

where R = V \{i, j} . (6)

Since these PACs come from a MLE of the sample covariance matrix S, P-values for the null hypoth-
esis of zero partial correlation can be calculated following (Roverato and Whittaker, 1996). All these
computations can be made in one single call to the function qpPAC():

> cache(pac <- qpPAC(leukemiaKEGG_es, g, return.K = TRUE,

+ verbose = FALSE), dir = cacheDir, prefix = cachePrefix)

We employ the estimated PACs and their P-values to select a final estimate Ĝ of the underlying undirected
graph G whose FWER of including a wrong edge is below a desired network-wide significance level. This
control of the FWER helps in discarding spurious associations with a large marginal strength (i.e., a
large Pearson correlation) but which in fact are indirectly occurring. In this case we select a Ĝ with
FWER < 0.05 using Holm’s procedure as follows:

> ridx <- row(pac$P)[as.matrix(upper.tri(pac$P) &

+ g)]

> cidx <- col(pac$P)[as.matrix(upper.tri(pac$P) &

+ g)]

> sigEdges <- which(p.adjust(pac$P[cbind(ridx, cidx)],

+ method = "holm") < 0.05)

> sigEdges <- data.frame(PWYi = colnames(pac$P)[ridx][sigEdges],

+ PWYj = colnames(pac$P)[cidx][sigEdges], PAC = pac$R[cbind(ridx,

+ cidx)][sigEdges], P.value = pac$P[cbind(ridx,

+ cidx)][sigEdges], PCC = cov2cor(solve(pac$K))[cbind(ridx,

+ cidx)][sigEdges])

> sigEdges <- sigEdges[sort(abs(sigEdges$P.value),

+ index.return = TRUE)$ix, ]

> dim(sigEdges)

[1] 8 5

The network shown in Figure 8 contains one large connected component with the KEGG pathway
”One carbon pool by folate” (KEGG ID HSA00670) as the most connected node in the network. Folate
is an essential nutrient that has been shown to play a role in prevention of many diseases including
neural tube defects, cardiovascular disease, and cancer where genetic variation in folate metabolism has
been reported to be associated to childhood leukemia (Thompson et al., 2001). The genes that form this
pathway, and form part of the analyzed data set, are:

> ids <- geneIds(c2BroadSets["KEGG_ONE_CARBON_POOL_BY_FOLATE"])[[1]]

> unlist(mget(ids[!is.na(match(ids, unlist(mget(featureNames(leukemia_eset),

+ hgu95aENTREZID))))], org.Hs.egSYMBOL), use.names = FALSE)

[1] "MTHFD2" "GART" "TYMS" "ALDH1L1" "MTHFS"

[6] "AMT" "DHFR" "SHMT1" "MTR" "MTHFD1"

[11] "ATIC" "MTHFR" "SHMT2"

Among these genes, a specific polymorphism in MTR has been shown to be associated to an increased
risk of ALL which was most pronounced for cases with the MLL translocation (Lightfoot et al., 2010).

5 Session Information

> toLatex(sessionInfo())
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Figure 8: Network of cross-talk associations between KEGG pathways of the leukemia data set obtained
by a Gaussian graphical modeling approach by which edges are included in the graph at a FWER <
0.05.
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