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A Method to Identify Significant Clusters

in Gene Expression Data

Abstract

Clustering algorithms have been widely applied to gene expression data. For
both hierarchical and partitioning clustering algorithms, selecting the number
of significant clusters is an important problem and many methods have been
proposed. Existing methods for selecting the number of clusters tend to find
only the global patterns in the data (e.g.: the over and under expressed genes).
We have noted the need for a better method in the gene expression context,
where small, biologically meaningful clusters can be difficult to identify. In this
paper, we define a new criteria, Mean Split Silhouette (MSS), which is a measure
of cluster heterogeneity. We propose to choose the number of clusters as the
minimizer of MSS. In this way, the number of significant clusters is defined as
that which produces the most homogeneous clusters. The power of this method
compared to existing methods is demonstrated on simulated microarray data.
The minimum MSS method is an example of a general approach that can be
applied to any clustering routine with any global criteria.



1 Motivation

Gene expression studies are swiftly becoming a very significant and prevalent tool in
biomedical research. The microarray and gene chip technologies allow researchers to
monitor the expression of thousands of genes simultaneously. An important goal with
large-scale gene expression studies is to find biologically important subsets of genes
and samples. Clustering algorithms have been widely applied to this problem. These
can be classified into partitioning and hierarchical clustering algorithms. Examples of
hierarchical algorithms include agglomerative clustering (as implemented in the Clus-
ter program by Eisenet al. [3]) and HOPACH [14]. Partitioning algorithms include
K-Means, Self-Organizing Maps [12], and Partitioning Around Medoids [6]. With
both types of algorithms, it is necessary to select the number of significant clusters.
In the hierarchical tree context this corresponds with choosing the level of the tree at
which the clusters are still significant. Methods for determining the number of clusters
are reviewed and compared by Milligan and Cooper [7] and by Fridlyand and Dudoit
[5], who note that none of the existing methods are satisfactory for gene expression
data analysis. We have also noted the need for a better method in the gene expression
context, where small, biologically meaningful clusters can be difficult to identify. In
particular, existing methods tend to identify only the global structure in the data, for
example, the over and under expressed genes. In this paper, we present a new method
for selecting the significant clusters.

We begin by describing the context and type of data that motivated our method
in Section 2. In Section 3, we first present a general method for identifying signif-
icant clusters and then illustrate the method with a specific criteria function, Mean
Split Silhouette (MSS). The power of this approach compared to existing methods is
demonstrated on simulated microarray data in Section 4.

2 Background

A typical gene expression experiment results in an observed data matrixX whose
columns aren copies of ap-dimensional vector of gene expression measurements,
wheren is the number of observations andp is the number of genes. For microarrays,
each measurement is typically a ratio, calculated from the intensities of two floures-
cently labeled mRNA (or cDNA) samples cohybridized to arrays spotted with known
cDNA sequences. Gene chips produce similar data, excepteach element is a quan-
titative expression level rather than a ratio. In both cases, the genes are a set ofp
elementsxj , j ∈ {1, . . . , p}, where each elementxj is an n dimensional vector
(x1j, . . . , xnj)T . Similarly, then samples are each ap dimensional vector. The meth-
ods we present can be used with either microarray or gene chip data (or indeed any
high dimensional data), but for simplicity we will assume that the measurements are
ratios.

Given data from such an experiment, researchers are often interested in identify-
ing groups of differentially expressed genes which aresignificantly correlated with
each other, since such genes might be part of the same causal mechanism or pathway.



In addition to identifying interesting clusters of genes, researchers often want to find
subgroups of samples (e.g.: patients) which share a common gene expression profile.
Thus, the data is usually first screened to eliminate certain genes, such as those show-
ing no difference in expression, from the subset. Then, the genes and/or the samples
are clustered. We will assume in our explanation of the method that the set of elements
to be clustered is the genes. In the simulations (Section 4), we illustrate both gene and
sample clustering. We have proposed a statistical framework for simultaneous cluster-
ing of both genes and samples [8].

All clustering algorithms are either implicitly or explicitly functions of a dissimilar-
ity matrix which measures the distance between every pair of elements. Letd(xj, xj′)
denote the dissimilarity between elementsj andj′ and letD be thep × p symmetric
matrix of dissimilarities. Typical choices of dissimilarity include Euclidean distance,
1 minus correlation, 1 minus absolute correlation and 1 minus cosine-angle. For ex-
ample, the cosine-angle distance between two vectors was used in [3] to cluster genes
based on gene expression data across a variety of cell lines.

Partitioning methods generally require that the user specify the number of clusters,
whereas hierarchical methods produce a tree of clusters in whicheach level is part
of a nested series of clustering results with sequentially more clusters as one moves
from top to bottom. With both types of methods, identifying a main clustering result
corresponds with choosing the number of clusters. Choosing the number of clusters
in a data analysis is equivalent to estimating the true number of clusters, which is a
parameter of the true data generating distribution defined by the clustering method and
the criteria for selecting the number of clusters. Different criteria for selecting the
number of clusters may estimate different parameters, so that it is important to perform
simulations in order to understand how a particular criteria works and to decide when
it will be useful.

Methods for selecting the number of significant clusters include direct methods and
resampling methods. Direct methods consist of optimizing a criteria, such as functions
of the within and between cluster sums of squares [7], occurrences of phase transi-
tions in simulated annealing [9], likelihood ratios [10], and average silhouette [6]. The
method of maximizing average silhouette has the advantage of being able to be used
with any clustering routine and any distance metric. A disadvantage of average silhou-
ette is that, like many criteria functions for selecting the number of clusters, average
silhouette measures the global structure only. We discuss this problem in more detail
below. Resampling methods take a different approach, testing for significant evidence
against a specific null hypothesis (e.g.: uniformity or unimodality) corresponding to no
clusters. Examples of resampling methods that have been used with gene expression
data are the gap statistic [11], the weighted average discrepant pairs (WADP) method
[1], and Clest [5]. We have also proposed resampling methods based on the sensitivity
and specificity of clusters over bootstrap samples [13] [2]. These resampling methods
are computationally much more difficult than direct methods since they involve the cre-
ation and evaluation of many data sets. The method we present in this paper is a direct
method, so we restrict our evaluation of it to a comparison with other direct methods.



3 Method

We have found some cases, in both real and simulated gene expression data, where
existing clustering routines and methods for selecting the number of clusters fail to
find the main clusters. The problem of finding relatively small clusters in the pres-
ence of one or more larger clusters is particularly hard. Another challenging problem
arises when the clusters are not equally distant from each other, but rather form nested
clusters within clusters as illustrated in Figure 1. This type of data structure arises
frequently in gene expression data. In this context, it is frequently the finer structure
that is of interest biologically. For example, the global structure might consist of two
clusters (e.g.: over and under expressed genes), but the biologist may be interested in
a particular, small cluster within the under expressed genes. This small cluster might
only be apparent after “diving into” the context of a larger, more inclusive cluster, just
as the details of neighborhoods are only visible from an airplane as one descends into
the city. Many methods for identifying the number of clusters in a data set find only
the global structure. Inspired by this lack of performance, we present a method for se-
lecting the number of clusters in a data set which can be applied with both partitioning
and hierarchical clustering algorithms.
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Data from 8 clusters of size 16: p=128, n=30, mu=(−9,−8,−5,−4,4,5,8,9), sigma=0.1

Figure 1: This example of a data set with nested clusters illustrates the difference
between global and finer clustering structure. Each data point (p = 128) was generated
independently from ann = 30 dimensional Normal distribution with one of eight
means and a shared standard errorσ = 0.1. The left panel is a plot of the data in random
order. The right panel is a plot of the same data ordered by the mean of the Normal
distribution from which it was generated. At the global level, there are two clusters
consisting of positive versus negative means. The gap between these two sets is larger
than any other gap in the data. However, if either set is considered independently, it is



easy to see two groups within it separated by a smaller gap. Similarly, there are two
groups withineach of these groups, so that at the finest level it is possible to distinguish
eight clusters.

3.1 General Method

Consider a series of proposed clustering results and a global criteria function. With
a partitioning algorithm, these may consist of applying the clustering routine with
k = 2, 3, . . . , K clusters whereK is a user-specified upper bound on the number of
clusters. With a hierarchical algorithm, the series may correspond to levels of the tree.
In either case, evaluate each proposed result separately using the following method.
For each such result, apply the clustering routine independently to the elements in each
of the clusters (ignoring elements in other clusters). Then evaluate the criteria function
on each of these clustering results to obtain a measure of cluster heterogeneity for each
cluster. Average this measure over clusters. Repeat the procedure for each of the pro-
posed clustering results in the series. The minimum indicates the clustering result with
most homogeneous clusters. The key idea behind the method is to evaluate how well
the elements in a cluster belong together by diving into each cluster and applying the
clustering algorithm and criteria function to the elements in that cluster alone, ignoring
the other clusters. This approach can be applied with any clustering routine and any
criteria function.

3.2 Mean Split Silhouette (MSS)

We present a particular application of this method called Mean Split Silhouette (MSS),
which uses average silhouette as the criteria. Since silhouettes can be calculated with
any clustering algorithm and any distance metric, MSS can be used to determine the
number of clusters with all partitioningand hierarchical clustering algorithms. Suppose
we are clustering genes.
Silhouette: Given a clustering, the silhouette for a given gene is calculated as follows
[6]. For each genej, calculateaj which is the average dissimilarity of genej with
other elements of its cluster:

aj = avgd(xj , xj′), j′ ∈ {i : l1(xi, M) = l1(xj , M)}.

For each genej and each clusterk to which it does not belong (that is,k 6= l1(xj , M)),
calculatebjk, which is the average dissimilarity of genej with the members of cluster
k:

bjk = avg d(xj , xj′), j′ ∈ {i : l1(xi, M) = k}.
Let bj = mink bjk. The silhouette of genej is defined by the formula:

Sj(M) =
bj − aj

max(aj, bj)
. (1)

Note that the largest possible silhouette is 1, which occurs only if there is no dissim-
ilarity within genej’s cluster (i.e.: aj = 0). The other extreme is -1. Heuristically,



the silhouette measures how well matched an object is to the other objects in its own
cluster versus how well matched it would be if it were moved to the next closest cluster.
Average Silhouette:The average silhouette over all elements has been used to eval-
uate and compare clustering results, including selecting the number of clustersk by
maximizing average silhouette over a range of possible values fork [6]. It has been
our experience, based on simulated and real gene expression data, that the average sil-
houette is actually a very good global measure of the strength of clustering results: see
also [4] for a favorable performance of average silhouette relative to other validation
functionals. As we have argued, however, it is important to go beyond global structure
in the analysis of gene expression data. Average silhouette alone is not able to identify
this finer structure, as illustrated in Section 4.
Mean Split Silhouette (MSS):Given a clustering result withk clusters, consider split-
ting each cluster into two or more clusters (the number of which can be determined,
for example, by maximizing average silhouette). In the hierarchical tree context, this
corresponds with computing the child clusters in the next level of the tree, while in
the partitioning context it corresponds with treating the elements ineach cluster as a
new sample and partitioning them. In both cases,each element has a new silhouette
after the split, which is computed relative to only those elements with which it shares
a parent. We call the average of the these for each parent cluster the split silhouette
SSi, i = 1, 2, . . . , k. The split silhouette is a measure of that cluster’s heterogeneity
(i.e.: it is low if the cluster is homogeneous and should not be split). We define MSS
as the mean of the split silhouettes over thek clusters:

MSS(k) =
1
k

k∑
i=1

SSi. (2)

Then, MSS is a measure of the average heterogeneity of the clusters in the clustering
result.
Choosing the Number of Clusters:Given a series of clustering results, we propose to
select the number of clusters by choosing the proposed result which minimizes MSS.
In this way, we choose the number of significant clusters that produces (on average)
the most homogeneous groups. One nice benefit of this approach is that it is possible
to select one cluster (i.e.: no groups) without using a testing approach and defining a
null distribution. Unlike most global criteria, MSS is defined fork = 1; it is in fact
the usual average silhouette for the whole data set. If the data is homogeneous, the
minimum MSS will occur atk = 1, as illustrated in Section 4.

4 Simulations

In order to illustrate the performance of the minimum MSS approach and compare it
to existing methods for choosing the number of clusters, we performed analyses of
simulated data.



4.1 Data

We designed a simulated data structure which is an idealization of the pattern of nested
clusters that we have observed in real gene expression data. The data are generated
from multivariate normal distributions. In each simulation, there are eight clusters. The
clusters differ in their means, and these means are spaced such that pairs of clusters are
closer to each other than to any other cluster and then pairs of these pairs are again
closer to each other that to the other sets of pairs (see Figure 1). The elements are un-
correlated with a shared standard error. As the standard error increases, the distinction
between the clusters becomes less clear. In fact, at the value of sigma for which normal
confidence intervals for the means of the pairs of closest clusters begin to overlap, it is
no longer possible to distinguish these clusters visually in a plot of the distance matrix
(see Figure 2). We would expect a good method for selecting the number of clusters to
shift from eight to four clusters at this point.
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Figure 2: This example of a data set with nested clusters illustrates the effect of the
noise levelσ on the ability to identify the finer clustering structure. Each of the two
Euclidean distance matrices is computed from a data set in which each data point (p =
40) is generated independently from ann = 30 dimensional Normal distribution with
one of eight means and a shared standard errorσ. The elements in each distance matrix
are ordered by the mean of the Normal distribution from which they were generated.
In the left panel,σ = 0.05 and it is easy to visually distinguish the eight clusters. In
the right panel,σ = 2 and it is only possible to visually distinguish four clusters. In
both plots, the pairwise distances are depicted on a color scale from green to white,
with dark green denoting the smallest distance.

This general data structure is used to generate data sets for both gene and patient
clustering examples. For gene clustering, we generate data sets withp = 512 genes



andn = 30 samples. We suppose that the data set has already been pre-screened to
remove genes (frequently the majority) showing little difference in expression, leaving
512 genes of interest. The mean vector isµ = (−9,−8,−5,−4, 4, 5, 8, 9), which
has the typical gap between over and under expressed genes that is observed after pre-
screening. The clusters are of equal size so that each contains 64 genes. We consider a
range of values for the standard errorσ ∈ {0.05, 0.5, 0.95, 1.5, 2, 5}, and we expect to
be able to distinguish only four clusters forσ ∈ {2, 5}.

For sample clustering, we generate data sets which resemble those we have found
when following a method which we have proposed for simultaneously clustering genes
and patients [8]. We suppose that the genes have already been clustered and an inter-
esting cluster of over expressed genes was identified in which the patients differ in the
amount they over express the subset of genes. We reduce the vector of gene expression
measurements for each patient to the mean value over the genes in this subset. The
resulting data set hasp = 1 measurement for each ofn = 360 patients. This large
number of patients is plausible in the context where an interesting subset of genes has
been pre-identified so that a larger sample can have expression of only these genes
measured (possibly using technology other than microarrays). The mean vector is
µ = (1, 2, 5, 6, 14, 15, 18, 19), representing 1 to 19-fold average over expression. The
clusters are of equal size so that each contains 45 patients. We consider a range of val-
ues for the standard error of the meanσ ∈ {≈ 0, 0.01, 0.05, 0.15, 0.25, 0.5, 0.95, 0.99},
and we expect to be able to distinguish only four clusters forσ ∈ {0.5, 0.95, 0.99}. We
look at σ ≈ 0 in order to understand the clustering result for the true data generating
distribution (i.e.: if we had observed the true distance matrix from the distribution in
which each patient has the exact mean value).

For the gene clustering simulations, we use Euclidean distance, which is capable of
capturing distinctions between clusters based on differences in their means. Euclidean
distance could also be used in the patient clustering simulations. We choose to use the
absolute value of the difference between the means in order to illustrate the use of a
different distance metric.
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Figure 3: Gene Clustering Simulation - The mean value of MSS over ten independent
data sets is plotted versus the number of clusters for a range of values ofσ.

4.2 Clustering Routines

We clustered each of the simulated data sets with both a partitioning and a hierarchical
method,each described briefly here.
Partitioning - PAM: The clustering procedure PAM [6] takes as input a dissimilar-
ity matrix D and produces as output a set of cluster centers or “medoids”. LetK be
the number of clusters and letM = (M1, . . . , MK) denote any sizeK collection of
then elementsxj . GivenM, we can calculate the dissimilarityd(xj , Mk) of each
element and each member ofM. For each elementxj , we denote the minimum and
minimizer bymink=1,...,K d(xj , Mk) = d1(xj , M) andmin−1

k=1,...,K d(xj , Mk) =
l1(xj , M). PAM selects the medoidsM∗ by minimizing the sum of such distances
M∗ = min−1

M
∑

j d1(xj , M). Each medoidM∗
k identifies a cluster, defined as the el-

ements which are closer to this medoid than to any other. This clustering is captured by
a vector of labelsl(X, M∗) = (l1(x1, M∗), . . . , l1(xp, M∗)). Choosing the number
of clusters with PAM corresponds with selecting the best possible value forK.
Hierarchical - HOPACH: Hierarchical Ordered Partitioning And Collapsing Hybrid
(HOPACH) is a hybrid clustering method that applies a partitioning algorithm itera-
tively to produce a hierarchical tree of clusters [14]. Ateachnode, a cluster is par-
titioned into two or more smaller clusters with an enforced ordering of the clusters.
Collapsing steps can be applied at any level of the tree to unite similar clusters, correct-
ing for errors made in the partitioning steps. A final ordered list is obtained by running
down the tree completely. The ordering of elements at any level of the tree is deter-
ministic and can be used to visualize the clustering structure in a colored plot of the



reordered data or distance matrix. The method combines the strengths of both divisive
and agglomerative hierarchical clustering methods. For the purposes of this simulation,
we used a version of HOPACH with PAM as the partitioning algorithm. After running
the algorithm with a data-adaptive number of clusters at eachnode, we noticed that
the data structure produced only binary splits. So, we restricted the number of clusters
at eachnode to two for the analysis. Choosing the number of clusters with HOPACH
corresponds with selecting a level of the tree to identify as the main clustering result.

4.3 Results

Clustering Genes:Figure 3 shows the mean value of MSS over ten independent simu-
lated gene clustering data sets for each value ofσ plotted versus the number of clusters.
The variance of MSS is very low relative to the mean (especially near the correct num-
ber of clusters), so that the MSS plot for each individual data set resembles the mean
value closely. The left panel illustrates the results from PAM clustering, where the
horizontal axis is the number of clustersk. The right panel illustrates the results from
HOPACH clustering, where the horizontal axis is the level of the treel (with 2l−1 clus-
ters). For both algorithms, the minimum MSS is at eight clusters for smaller values of
σ and at four clusters forσ > 1.5, as expected.
Clustering Samples: Figure 4 shows the mean value of MSS over ten independent
simulated patient clustering data sets for each value ofσ plotted versus the number of
clusters. The MSS plot for each individual data set resembles the mean value, since the
variance of MSS is low relative to the mean (though slightly less so than in the genes
simulation due to the lower dimension of the vectors being clustered). Again, PAM is
illustrated on the left and HOPACH on the right. For both algorithms, the minimum
MSS is at eight clusters for smaller values ofσ and at four clusters forσ ≥ 0.5.
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Figure 4: Patient Clustering Simulation - The mean value of MSS over ten independent
data sets is plotted versus the number of clusters for a range of values ofσ.

We also considered clustering a data set in which each patient is ap dimensional
vector (p large), rather than the mean over a certain subset of genes. The results are
similar, with MSS being even less variable due to then × n patient distance matrix
being extremely stable when computed overp genes.
One Cluster: Unlike most global criteria, MSS is defined fork = 1 cluster. It is in
fact the usual average silhouette for the whole data set. Hence, it is possible to select
one cluster (i.e.: no groups) using the minimum MSS method. In order to examine
the performance of MSS with unimodal data (where we expect to find only one clus-
ter), we simulated a data set withn = 360 observations from a univariateN(0, 0.05)
distribution, applied PAM and HOPACH with Euclidean distance and computed MSS.
Figure 5 shows MSS versus the number of clusters for this data set, with PAM on the
left and HOPACH on the right. For both algorithms, the minimum MSS is at one clus-
ter. This result indicates that MSS can be used to directly select one cluster without
using a testing approach and defining a null distribution.
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Figure 5: One Cluster Simulation - MSS is plotted versus the number of clusters.
Comparison with Other Methods: In order to compare the minimum MSS method to
other methods for selecting the number of clusters, we implemented several methods
from the literature on a simulated data set. We chose to compare MSS with all four
of the direct methods in [5], which were also used in [11] and were among the best
performing methods in [7]. Each of these methods is described briefly here. Letn be
the number of elements to be clustered andp be the dimension of the elements. Define
Bk andWk as thep×p matrices of between and withink-clusters sums of squares and
cross-products, and lettr() denote the trace of a matrix. We seek an estimateK̂ of the
number of clusters.



1. Calinski & Harabasz (CH):̂K = argmaxk≥2CHk, where

CHk =
tr(Bk)/(k − 1)
tr(Wk)/(n − k)

.

2. Hartigan (H):K̂ = argmink≥1Hk such thatHk ≤ 10, where

Hk =
(

tr(Wk)
tr(Wk+1)

− 1
)

(n − k − 1).

3. Krzanowski & Lai (KL):K̂ = argmaxk≥2KLk, where

dk = (k − 1)2/ptr(Wk−1) − k2/ptr(Wk),

KLk =
|dk|

|dk+1| .

4. Silhouette (Sil):K̂ = argmaxk≥2silk , wheresilk is the average silhouette over
all elements and silhouette is defined in Eq.( 1).

We used the simulated data models from the gene and patient clustering simulations
to compare the methods. Foreach data set, we applied PAM with Euclidean distance
andk = 2, 3, . . . , 16 and evaluated each of the four criteria functions and also MSS.
We repeated the simulation independently ten times and kept track of the estimated
number of clusterŝK according to each method for each data set.
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Figure 6: Gene Clustering Simulation - Estimated number of clustersK̂ is plotted for
a range of values ofσ for each criteria.



Figure 6 shows box plots of̂K for each method and each value ofσ in the gene
clustering simulation. All of the methods show a decrease inK̂ with increasingσ. The
methods of both Calinski & Harabasz and Hartigan frequently estimate more than the
correct number of clusters, while the Silhouette method estimates too few clusters. The
method of Krzanowski & Lai performs relatively well, although it makes the switch
from eight to four clusters at a lower value of sigma than expected based on the distance
between the cluster means. The minimum MSS method performs the best, but shows
some variation inK̂ over the ten simulations.
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Patient clustering: box plots of the number of clusters by five methods on ten simulated data sets

Figure 7: Patient Clustering Simulation - Estimated number of clustersK̂ is plotted for
a range of values ofσ for each criteria.

Figure 7 shows box plots of̂K for each method and each value ofσ in the pa-
tient clustering simulation. The methods of both Calinski & Harabasz and Hartigan
always estimate more than the correct number of clusters, choosing the user-specified
maximum number of clusters (K = 16) in every simulated data set. The method of
Krzanowski & Lai makes the switch from eight to four clusters at a lower value of
sigma than expected based on the distance between the cluster means and then begins
to estimate an increasing number of clusters at the higher values ofσ. The Silhouette
method again estimates too few clusters for most values ofσ. The minimum MSS
method performs the best, showing less variation inK̂ over the ten simulations than in
the gene clustering simulation.

More extensive simulations, for example using the eight simulated models in [5],
are needed to illustrate the relative performance of MSS in a wider range of contexts.



5 Clustering Routine and Criteria

Given a data generating distribution, different clustering routines may produce differ-
ent clusters. The clusters one would observe if the true distance matrix were known
is the clustering parameter, which is estimated by applying the clustering algorithm to
the observed distance matrix. In real data analyses, we do not know the clustering pa-
rameter, but by studying the performance of different clustering routines on simulated
data we can learn about the type of parameters they estimate (e.g.: identifying efficient
versus robust methods). Similarly, different criteria for selecting the number of clus-
ters will define different parameters of the true data generating distribution. Hence, it is
useful to examine how different criteria for selecting the number of clusters perform on
simulated data. In particular, it will be useful to look at how different criteria operate
in conjunction with a range of clustering algorithms. There may be some criteria that
are better suited to be used with certain algorithms. Ideally, one would like to have a
criteria that is optimal independent of the algorithm.

We have presented a general method for selecting the number of clusters which
can be implemented with any global criteria function. The method has been illustrated
with the criteria silhouette. The method can be applied to any clustering routine, and
we have chosen to use PAM and HOPACH as examples of clustering routines. Some
preliminary analyses with real data (not reported here) indicate that in situations where
it is much harder to cluster the data than in the idealized simulations described in this
paper, it might be useful to use the same criteria function in the clustering routine as
in the method to choose the number of clusters. For example, PAM (as a partitioning
method and as used in HOPACH) minimizes the sum of distances to the closest medoid,
rather than maximizing the sum (or average) of silhouettes. Hence, the clusters pro-
duced by PAM may not be ideal with respect to minimizing MSS. We have developed
a clustering algorithm called PAMSIL that replaces the criteria function in PAM with
average silhouette [15]. Since PAMSIL optimizes average silhouette, it may be a more
appropriate algorithm to use with MSS. We are currently investigating this idea.

6 Discussion

The minimum MSS method presented in this paper is an implementation of a general
approach for selecting the number of clusters. The approach takes a distance matrix,
a global criteria (such as average silhouette), and a clustering algorithm as input and
returns optimal cluster labels. The idea is to evaluate each of a series of potential clus-
tering results by diving into each of the proposed clusters individually, applying the
clustering algorithm to the elements in that cluster, and evaluating the criteria for that
cluster. In this way, a measure of heterogeneity is computed for each proposed clus-
ter. By averaging these over clusters, the proposed clustering result can be evaluated



in terms of cluster homogeneity. The clustering result with minimum average hetero-
geneity is selected. This approach can be used to select the number of clusters with
both partitioning and hierarchical algorithms. In its most general form, the method can
be used with any clustering routine and any global criteria, although we believe that
some thought should be put in to pairing the criteria and the algorithm so that they are
optimizing some what similar functions of the data.

We have compared MSS with four of the best performing direct methods in the
literature. This comparison was done on simulated data sets with a nested cluster struc-
ture similar to patterns we have seen in real gene expression data. We considered both
clustering of genes and clustering of samples (e.g.: patients) within clusters of genes.
While this simulation is somewhat idealized, it illustrates the challenge of identify-
ing smaller clusters and going beyond global clustering patterns. The minimum MSS
method is better able to identify the finer structure in the data than any of the other four
methods. In particular, average silhouette tends to only find the two largest clusters
even for very low noise levels. In addition, MSS is defined for only one cluster and is
indeed minimized atk = 1 clusters when the data are unimodal.

An alternative approach to selecting the number of clusters involves testing for evi-
dence against a given null distribution. Testing methods generally involve re-sampling
or permuting the data many times and are therefore much more computationally inten-
sive that direct methods. For this reason, we did not compare our method with testing
approaches. An extension of this study would be to evaluate a number of methods on a
wider selection of models, such as those used in [5].

Although it was developed in the context of gene expression data analysis, the MSS
criteria has a much wider range of applications. The nested data structure discussed
here occurs in many contexts, and the simulation results we have presented indicate
that MSS may be a valuable model selection tool for selecting the number of clusters
with both partitioning and hierarchical clustering algorithms.
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