
easyRNASeq, an overview

Nicolas Delhomme, Ismaël Padioleau

August 28, 2012

Contents

1 Before you start 2

2 Changes to the vignette 2

3 Introduction 4

4 easyRNASeq 6
4.1 usage . 7
4.2 description . 10
4.3 different input . 13
4.4 different annotation . 15
4.5 different output . 19
4.6 different summarization . 20
4.7 optional normalization . 22
4.8 Performance . 25

5 Advanced usage 26
5.1 De-multiplexing samples . 26

6 Yet to come 31

7 Use Cases 32

8 Session Information 42

9 Final remarks 44

1

1 Before you start

If you are completely new to the R/Bioconductor [Gentleman et al., 2004]
packages dealing with Next-Generation Sequencing, you might want to start
by doing the tutorial available in the RnaSeqTutorial vignette in the data
package RnaSeqTutorial . The same holds true if you’re interested in under-
standing the details behind the content of the present vignette. If neither
nor, just go ahead.

Moreover, if you find easyRNASeq useful and apply it in the frame of
your research for a publication, please cite it:

easyRNASeq: a bioconductor package for processing RNA-Seq data
Nicolas Delhomme; Ismael Padioleau; Eileen E. Furlong; Lars M. Steinmetz
Bioinformatics 2012; doi: 10.1093/bioinformatics/bts477

2 Changes to the vignette

The last changes are reported in red.

1.3.14 A new section: 6 was added describing foreseen changes to the
package, see page 31. Additional changes to the vignette use-case where
made thanks to Richard Friedman’s suggestions, see section 7, page 32.

1.3.10 - 1.3.13 Some vignette discrepancies have been corrected. Thanks
to Richard Friedman for spotting them, see paragraph 4.1, page 8. Some
additional information about the ’gtf’ and ’gff’ format has been added after
fixing the bug reported by Tomasz Kulinski. See section 4.1, page 7.

1.3.9 Not much change to the vignette, but for the fact that the easyR-
NASeq application note got published in Bioinformatics [Delhomme et al.,
2012].

1.3.5 - 1.3.8 The vignette has been updated to report function call changes
to the easyRNASeq function:

• the format argument defaults to bam

• the chr.sizes can be derived from the bam file header

• the addition of the knownOrganisms function

• support for variable length reads

• read files can be processed in parallel

2

Sections affected are: 4.1 (page 7), 4.1 (page 9), 4.2 (page 10), 4.3 (page
13), 4.8 (page 25),7 (page 32),7 (page 37)

1.3.1 - 1.3.4 The vignette has been updated to:

• first: enhance its readability.

• second: introduce a new Use Case section

Sections affected are: 4 (page 6), 4.1 (page 7), 4.2 (page 10), 4.4 (page 15),
5.1 (page 26), 7 (page 32)

3

3 Introduction

This file describes the use of the easyRNASeq package to ease the processing
of RNA-seq data in R/Bioconductor. RNA-seq [Mortazavi et al., 2008] was
introduced as a new method to perform Gene Expression Analysis, using the
advantages of the high throughput of Next-Generation Sequencing (NGS)
machines.

The goal of this vignette is, first, to show an example of the easyRNASeq

function that generates a count table for the selected genic features of inter-
est, i.e. exons, transcripts, gene models, etc. using the read data and the
genic and genomic annotations. This overall process is described in figure 1,
page 5. Shortly, the genomic and genic annotation will be retrieved from the
selected/preferred source and converted into an appropriate object. In par-
allel, the sequenced reads’ information (e.g. chromosome, position, strand,
etc.) will be retrieved from the alignment file and, similarly, converted to
an appropriate object. Then, the reads contained in the reads object are
summarized per genic annotation contained in the annotation object, which
give raise to a count table that, finally, can be normalized using additional
R packages.

Then, the easyRNASeq function arguments will be detailed and addi-
tional information given on how to generate normalized data, such as creat-
ing RPKM (Reads Per Kilobase of feature per Million reads in the library)
counts or by using more advanced statistical models implemented in the
DESeq or edgeR packages.

In the second part, we will see how more advanced pre-processing can
be performed, such as de-multiplexing.

Additional post-processing such as exporting the count table as bed and
wig formatted file, to be visualized into the UCSC genome browser or a
stand alone genome browser are described in the vignette of the companion
data package RnaSeqTutorial .

4

Figure 1: easyRNAseq Overview. The R packages used for the different
steps are emphasized in bold face.

5

4 easyRNASeq

We will use the data present in the RnaSeqTutorial data package to perform
the examples. Refer to its documentation for more details. Shortly, it con-
tains different Drosophila melanogaster RNA-Seq dataset saved in different
format as well as the related annotation retrieved from FlyBase [Tweedie
et al., 2009].

The main function of the easyRNASeq package is easyRNASeq. That
should be the only processing method you need to know about when using
the package. It is essentially a wrapper around other function performing the
different tasks described in the following, functions which are all exported
too, if you feel you need to have a look at them. The easyRNASeq package
defines an RNAseq class for holding the necessary information used during
the processing. The easyRNASeq function instantiates an object of that class
and although most arguments of the easyRNASeq function are optional (as
are the corresponding RNAseq object slots),it is advised to set them, es-
pecially the readLength and the organismName; to help having a proper
documentation of your analysis. The organismName slot is actually manda-
tory if you want to get genomic annotation using biomaRt . In that case,
you need to provide the name as specified in the corresponding BSgenome
package, i.e. “Dmelanogaster” for the BSgenome.Dmelanogaster.UCSC.dm3
package.

Important Note: As there are numerous RNA-Seq protocol, each with
its own specificities, the easyRNASeq offers many arguments to adapt to
these. This number of arguments, with only a few defaults values, might be
intimidating. We are in the process of consolidating them to make it easier
to handle them. In the meantime, please refer to the documentation and
the examples in this vignette and the RnaSeqTutorial one to get familiar
with them. Do not hesitate to ask on the Bioconductor mailing list if the
purpose of some argument was still unclear.

6

4.1 usage

Initial example In the following, the easyRNASeq function is called with
an almost minimal set of parameters (some optional ones too...). The se-
quencing reads’ excerpts were obtained from a fruit-fly sample that was
subjected to a 36 cycles sequencing on an Illumina GAIIX machine. The
annotation were retrieved from FlyBase and converted into an “Rdata” ob-
ject. We’re interested to retrieve the count table of 4 samples for every exon
in the genome. As of version 1.3.5, ’bam’ is the default format. Hence, the
argument ’format’ has been removed from the following function call.

> library(easyRNASeq)

> library(RnaSeqTutorial)

> library(BSgenome.Dmelanogaster.UCSC.dm3)

> count.table <- easyRNASeq(filesDirectory=system.file(

+ "extdata",

+ package="RnaSeqTutorial"),

+ pattern="[A,C,T,G]{6}\\.bam$",

+ readLength=30L,

+ organism="Dmelanogaster",

+ chr.sizes=seqlengths(Dmelanogaster),

+ annotationMethod="rda",

+ annotationFile=system.file(

+ "data",

+ "gAnnot.rda",

+ package="RnaSeqTutorial"),

+ count="exons"

+)

Checking arguments...

Fetching annotations...

Summarizing counts...

Processing ACACTG.bam

Processing ACTAGC.bam

Processing ATGGCT.bam

Processing TTGCGA.bam

Preparing output

> head(count.table)

ACACTG.bam ACTAGC.bam ATGGCT.bam TTGCGA.bam

CG11023:1 0 0 0 0

CG11023:2 0 0 0 0

CG11023:3 0 0 0 1

CG2671:1 0 0 0 0

7

CG2671:2 1 0 0 1

CG2671:3 13 8 11 12

> dim(count.table)

[1] 69306 4

In this command, we’re reading bam files (format), present in the first
argument to the function (filesDirectory) using a regular expression to
match the file names (pattern). The system.file retrieve the actual path
on your file system where the “RnaSeqTutorial” package was installed and
in that particular case of its “extdata” sub-directory. The pattern used to
retrieve the files is similar to that of the base commands dir and grep. Here
we look up files, which name contains 6 times one of the “A”, “C”, “G” or “T”
letter, followed by the “.bam” extension. We additionally define the number
of sequencing cycles (readLength), and the organism that sample originates
from. We then provide genomic and genic information. The size of the chro-
mosomes (chr.sizes) and the exons’ annotation (annotationFile) that
were already processed in an “RData” file (annotationMethod). Finally, we
precise that we want the sequenced reads to be summarized by “exons”; i.e.
we want to get a read count value per exon and per sample.

And that is all. In that one command, you got the exon count table for
your 4 samples!

Important Note: It is not required to use any of the BSgenome pack-
ages to retrieve the chr sizes. These can be provided as a simple named
vector. We just use the BSgenome.Dmelanogaster.UCSC.dm3 package for
commodity. Moreover, since version 1.3.5, the ’chr.sizes’ can be extracted
from the BAM file header; i.e. setting ’chr.sizes’ to “auto” (the default)
would have retrieved the chromosome sizes from the BAM file. Note that
this obviously does not work if your format is not ’bam’. See the additional
comments in the use case page 34. In addition, since version 1.3.10, the
’filesDirectory’ argument defaults to the current directory. This one can be
looked up using the getwd() function.

Warnings As you could see when running the previous example, warnings
were emitted and quite rightly so.

1. about the annotation: The annotation we are using here is redundant
and this at two levels. First, some exons overlap. These are alterna-
tive exons from different transcript isoforms. Second, the annotation
contains the information about all the possible different transcript iso-
forms. This means that some exons are duplicated. Therefore counting
by exons or transcripts using these annotation will result in counting
some of the reads several times. There might be reasons one might

8

want to do that, but as it is probably not what you want when per-
forming an RNA-Seq analysis, the warning is emitted. As this can be
a very significant source of error, all the examples here will emit this
warning, at the exception of the summarization by “GeneModels” that
address that problem (c.f. 4.6, page 20). The ideal solution is to pro-
vide an annotation object that contains no overlapping features. The
disjoin function from the IRanges package offers a way to achieve
this.

2. about potential naming issue in the input file: It is (sadly) very fre-
quent that the sequencing facilities use different naming conventions
for the chromosomes they report in the alignment files. It is therefore
very frequent that the annotation provided to easyRNASeq uses dif-
ferent chromosome names than the alignment file. These warnings are
there to inform you about this issue.

Arguments Going back to the easyRNASeq function, more arguments can
be set to fine tune it, depending on the input at hand, the desired output, etc.
Most will be detailed in the following, but not all, so check “?easyRNASeq”
out for more. One such argument is: “filenames”, that offers the possibility
to give actual filenames rather than using a pattern matching approach to
find them. For example, if you’re only interested in two samples out of the
four available ones in the provided directory, do:

> count.table <- easyRNASeq(system.file(

+ "extdata",

+ package="RnaSeqTutorial"),

+ organism="Dmelanogaster",

+ readLength=30L,

+ annotationMethod="rda",

+ annotationFile=system.file(

+ "data",

+ "gAnnot.rda",

+ package="RnaSeqTutorial"),

+ count="exons",

+ filenames=c("ACACTG.bam", "ACTAGC.bam"))

As of version 1.3.5, ’bam’ is the default format. Hence, the argument
’format’ has been removed from the previous function call. The same is true
for the ’chr.sizes’ argument. Removing it results in setting it to its default
value: ’auto’, which has the effect of determining the chromosome sizes using
the BAM header.

> head(count.table)

> dim(count.table)

9

4.2 description

There are several arguments that influence how the easyRNASeq is going to
be executed. They concern:

• the input at hand

• how to retrieve the annotations

• how to summarize the counts

• the desired output

• whether normalization should be performed

Input Using the format arguments, reads can be loaded from BAM files
or any format supported by the ShortRead [Morgan et al., 2009] package.
The SAM/BAM format [Li et al., 2009] is becoming a de-facto standard for
storing NGS aligned data. Gapped alignment can be read from BAM files,
set the gapped argument to “TRUE” for that. As of version 1.3.5, the ’bam’
format is the default. If you are using bam files, you do not need to precise
that argument anymore. As of version 1.3.6, it is possible to set additional
options to locate the read files. All the options from the list.files base func-
tion are available, i.e. one can search for file recursively. As of version 1.3.7,
variable read lengths is supported. The current implementation results in a
small, neglictible approximation of the read counts, due to the likelyhood of
an integer overflow. This is currently investigated and appropriate warnings
will be raised if it were to affect the results.

Annotation The easyRNASeq function currently accepts the following an-

notationMethods:

• “biomaRt” use the biomaRt [Durinck et al., 2005] package to retrieve
the annotation

• “env” use a RangedData or GRangesList class object present in the
environment - see page 36 for a use case.

• “gff” reads in a gff version 3 file

• “gtf” reads in a gtf file as provided by Ensembl [Flicek et al., 2011]

• “rda” load an RData object. The object needs to be named gAnnot

and of class RangedData or GRangesList . See the use case page 35
to prepare such an object using the GenomicFeatures. “.rda” is the
filename extension of serialized R data object (i.e. object written
to disk using the save function). The filename extension for these

10

files used to be and still is sometimes“.RData”. The actual filename
extension used is of no importance to easyRNASeq - see page 35 for a
use case.

The structure of the RangedData object that has to be provided when using
the “rda” or “env” annotationMethods is described in the section 4.4 (page
15). For using a GRangesList , see the use case page 35. More details on the
gff3 and gtf format can be obtained from:

• gff3: http://www.sequenceontology.org/gff3.shtml

• gtf: http://mblab.wustl.edu/GTF22.html

Unlike for the gtf, the gff3 ninth column holding the attributes has no manda-
tory tags. Some of them are however “predefined”. As exemplified further
down (see 4.4, 16), we expect these “predefined” attributes to be used and
we rely on the “ID”, “Parent” and “Name” to identify the relation between a
gene and its exons and transcripts.

Summarization The reads can be counted/summarized by:

• exons

• features (any features such as introns, enhancers, etc.)

• transcripts

• geneModels: they consists of the set of disjoint “synthetic” exons that
fully overlap every known exons and UTRs of a gene; I.e. every alter-
nate exon will be split into separate “synthetic” exons and these exons
will be grouped into a set that correspond to a single gene.

When you use a the “geneModels” summarization, no reads will be
counted twice at the exception of those mapping overlapping exons of dif-
ferent genes, whether on the same strand or not. The easyRNASeq does not
deal with these situation, but as previously a warning will be emitted if this
occurs.

Output The results can be exported in four different formats:

• count table (the default, a n (features) x m (samples) matrix).

• a DESeq [Anders and Huber, 2010] CountDataSet class object. Useful
to perform further analyses using the DESeq package.

• an edgeR [Robinson et al., 2010] DGEList class object. Useful to
perform further analyses using the edgeR package.

• an RNAseq class object. Useful for performing additional pre-processing
without re-loading the reads and annotations.

11

Normalization The results can optionally be “normalized” as Reads per
Kilobase of feature per Million reads in the library (RPKM, Mortazavi et al.
[2008]). In addition, the normalization step is available when the results are
exported in the DESeq or edgeR formats. This will as well generate plots to
assess

the validity of the normalization and help decide how to proceed with
any downstream analysis.

In the following paragraphs, the usage of these different arguments will be
presented.

12

4.3 different input

The following show how to load an ’export’ file. This was the default Illumina
output before Illumina released CASAVA v1.8 in spring 2011. The alignment
are done with ELAND. The format argument has to be set to the “aln”
value and an additional arguments: type has to be provided to precise the
input file format. See the ShortRead readAligned help page for all the
available formats. Note as well the filter argument that is essential to
filter the usable reads from the export file. Indeed, the export file does
contain every read, including those not aligning and those not passing the
original quality filter performed during the Illumina Base Calling (Bustard)
a.k.a. the chastity filter. For more details, see the section “Filtering the
Data” in the RnaSeqTutorial vignette.

> count.table <- easyRNASeq(system.file(

+ "extdata",

+ package="RnaSeqTutorial"),

+ organism="Dmelanogaster",

+ chr.sizes=seqlengths(Dmelanogaster),

+ readLength=36L,

+ annotationMethod="rda",

+ annotationFile=system.file(

+ "data",

+ "gAnnot.rda",

+ package="RnaSeqTutorial"),

+ format="aln",

+ type="SolexaExport",

+ count="exons",

+ pattern="subset_export",

+ filter=compose(

+ chromosomeFilter(regex="chr"),

+ chastityFilter()))

Note that here the chr.sizes argument has to be specified. Indeed, we are
using the ’aln’ format and consequently cannot determine the chromosome
sizes from the header of the BAM files.

In the next example, we read a BAM file containing gapped alignments.
In that particular case, TopHat [Trapnell et al., 2009] was used to look for
splicing events. Note the use of the gapped boolean argument. As of version
1.3.5, the format argument default to bam and has therefore been removed
from the following function call.

> count.table <- easyRNASeq(system.file(

+ "extdata",

+ package="RnaSeqTutorial"),

13

+ organism="Dmelanogaster",

+ chr.sizes="auto",

+ readLength=36L,

+ annotationMethod="rda",

+ annotationFile=system.file(

+ "data",

+ "gAnnot.rda",

+ package="RnaSeqTutorial"),

+ gapped=TRUE,

+ count="exons",

+ filenames="gapped.bam")

Note that setting the ’chr.sizes’ argument to ’auto’ is the same as remov-
ing it from the function call.

14

4.4 different annotation

The following paragraphs present how to use different annotation sources to
retrieve the genic information. It describes as the well the expected format
of these annotations.

Important Note: There are many derivative of the GFF3 and GTF
file formats, some of which do not strictly follow the convention these files
should have. Using incorrectly formatted file will fail and most of the time a
relevant error message will be reported. GTF files as produced by Ensembl
and GFF3 files as produced by Flybase are correct implementation of these
formats and are processed smoothly by the easyRNASeq function. If you
encounter problem while using such an annotation file, please try to correct
them. For the GFF format, the example file present in the RnaSeqTutorial
package can be used as a guideline. If you have installed this package,
suggested by the easyRNASeq package, the following will give you the path
of that file on your machine:

> system.file(

+ "extdata",

+ "annot.gff",

+ package="RnaSeqTutorial")

If you do not manage to identify the issue, please contact the Biocon-
ductor mailing list for help.

biomaRt The following show how to use biomaRt to retrieve the annota-
tions.

> count.table <- easyRNASeq(system.file(

+ "extdata",

+ package="RnaSeqTutorial"),

+ organism="Dmelanogaster",

+ readLength=36L,

+ annotationMethod="biomaRt",

+ gapped=TRUE,

+ count="exons",

+ filenames="gapped.bam")

Once the annotation has been fetched, one can retrieve them from an
RNAseq object. This implies that the “outputFormat” argument will have
been set to “RNAseq”, so that the complete object is returned and not
only the count table (c.f. 4.5, page 19). Using the “genomicAnnotation”
accessor on that object, one can get the annotation as an RangedData
object. This object can be saved in an “rda” file under the name “gAn-
not” for a faster processing using the easyRNASeq function with the argu-

15

ments“annotationMethod” and “annotationFile” set to “rda” and the path
where you would have saved the rda file.

genomeIntervals In the next example is shown how to use a gff file for
the same purpose. Clearly, every gff formatted file will have different gff at-
tributes (its last column). This column contains“key=value”pairs separated
by semi-colons. We depend on specific key to be present as we have been us-
ing Flybase gff files to develop that functionality; hence we expect attributes
as defined by Flybase. First, we’re only considering feature of type ’exon’ in
the third column. Then we expect the following keys: ID, Parent, and Name
in the attributes. The ID key should have the format: geneID:exonNumber ;
both the exon and gene are derived from it. The Parent key should contain
the transcript ID. If one exon is part of several transcripts, these can be
concatenated using commas without space. Finally, the Name key should
contain the gene name, but is actually optional. As we are using the read-

Gff3 function from the genomeIntervals package, it is as well essential that
the pairs key=value are separated by semi-colons whitout space. See the
“annot.gff” file used in the next example.

> count.table <- easyRNASeq(system.file(

+ "extdata",

+ package="RnaSeqTutorial"),

+ organism="Dmelanogaster",

+ readLength=36L,

+ annotationMethod="gff",

+ annotationFile=system.file(

+ "extdata",

+ "annot.gff",

+ package="RnaSeqTutorial"),

+ gapped=TRUE,

+ count="exons",

+ filenames="gapped.bam")

RangedData Internally, an easyRNAseq function call with the annota-

tionMethod “gff”, “gtf”, or “biomaRt” will convert the annotation into an
object of the RangedData class. Using the annotationMethod“env” or “rda”
requires that you provide such an object. The following example shows the
expected structure of such an object.

> gAnnot <- RangedData(

+ IRanges(

+ start=c(10,30,100),

+ end=c(21,53,123)),

+ space=c("chr01","chr01","chr02"),

16

+ strand=c("+","+","-"),

+ transcript=c("trA1","trA2","trB"),

+ gene=c("gA","gA","gB"),

+ exon=c("e1","e2","e3"),

+ universe = "Hs19"

+)

> gAnnot

RangedData with 3 rows and 4 value columns across 2 spaces

space ranges | strand transcript gene exon

<factor> <IRanges> | <character> <character> <character> <character>

1 chr01 [10, 21] | + trA1 gA e1

2 chr01 [30, 53] | + trA2 gA e2

3 chr02 [100, 123] | - trB gB e3

Here we are describing the genomic location of three exons (chromosome,
position and strand) as well as their transcript and gene membership. Noth-
ing else is actually required. Note that the names’ spelling is essential for
the easyRNAseq function to work properly. Indeed, the count argument will
be used to lookup the proper values into the annotation, e.g. for summariz-
ing by “exons”, an “exon” column in the RangedData object is mandatory; a
“feature” one for counting “features”, a “transcript” one for “transcripts”, etc.
To have a look at the RangedData class gAnnot object used in this tutorial,
you can do the following:

> data(gAnnot)

> gAnnot

The easyRNASeq package support as well annotation provided as a
GRangesList class object (from the GenomicRanges package). Convert-
ing a RangedData class object into a GRangesList class object is pretty
straightforward.

> grngs <- as(gAnnot,"GRanges")

> grngsList<-split(grngs,seqnames(grngs))

> grngsList

GRangesList of length 2:

$chr01

GRanges with 2 ranges and 3 metadata columns:

seqnames ranges strand | transcript gene exon

<Rle> <IRanges> <Rle> | <character> <character> <character>

[1] chr01 [10, 21] + | trA1 gA e1

[2] chr01 [30, 53] + | trA2 gA e2

17

$chr02

GRanges with 1 range and 3 metadata columns:

seqnames ranges strand | transcript gene exon

[1] chr02 [100, 123] - | trB gB e3

seqlengths:

chr01 chr02

NA NA

The advantage of doing so is that the RangedData class might get dep-
recated in the future. The next advantage is that the GRangesList class
is strand-aware. Therefore, support for strand-specific data is going to be
supported as soon as I put my hand on such a dataset. Any suggestion, or
data excerpt is welcome.

Remember Generating the proper annotation is probably the most im-
portant step in processing your RNA-Seq sample. Mind the warnings pro-
duced by the easyRNASeq function, they might be annoying, but there are
there for a good reason: to help.

18

4.5 different output

For example, to generate from the same input files and annotation an object
of class RNAseq , use the outputFormat argument as follow:

> rnaSeq <- easyRNASeq(system.file(

+ "extdata",

+ package="RnaSeqTutorial"),

+ organism="Dmelanogaster",

+ readLength=30L,

+ annotationMethod="rda",

+ annotationFile=system.file(

+ "data",

+ "gAnnot.rda",

+ package="RnaSeqTutorial"),

+ count="exons",

+ pattern="[A,C,T,G]{6}\\.bam$",

+ outputFormat="RNAseq")

Checking arguments...

Fetching annotations...

Summarizing counts...

Processing ACACTG.bam

Processing ACTAGC.bam

Processing ATGGCT.bam

Processing TTGCGA.bam

Preparing output

More details on how to generate CountDataSet (DESeq) or DGEList
(edgeR) will be presented further down, see section 4.7, page 22.

19

4.6 different summarization

easyRNASeq offers two possibilities to apply different reads’ summarization.
First, as we have seen previously, by using one of the four possible count

argument: “exons”, “features”, “transcripts” or “genes”. However, if you
want to perform different summarization on the same data, e.g. by “exons”
and “transcripts”, calling the easyRNASeq twice is inefficient as you will be
processing the read files and fetching the annotation twice. To prevent this,
one can provide the “RNAseq” value to the outputFormat argument, in
which case, the entire object is returned. Using specific functions on that
object is the second way to apply different summarization on the same data.
These functions are:

• exonCounts function to calculate the exon counts

• featureCounts function to calculate the exon counts

• transcriptCounts function to calculate the transcript counts

• geneCounts function to calculate the gene counts. It takes an ad-
ditional parameter defining the kind of gene summarization, either
bestExons or geneModels. The bestExons summarization will return
per gene, the highest exon count. The geneModels summarization
first calculate a gene model and then return the read count for it.

• readCounts function to access the different count tables stored in the
RNAseq object.

For example, to summarize the reads per transcripts, we will use the
transcriptCounts function on the previously generated rnaSeq object and
then use the readCounts function to access the transcript count table.

> rnaSeq <- transcriptCounts(rnaSeq)

> head(readCounts(rnaSeq,'transcripts'))

ACACTG.bam ACTAGC.bam ATGGCT.bam TTGCGA.bam

FBtr0005009 0 0 0 0

FBtr0005088 56 29 44 52

FBtr0005673 2 0 1 2

FBtr0005674 7 3 9 6

FBtr0006151 0 0 0 1

FBtr0070000 0 0 0 0

Summarizing by transcript introduces some complexity in the data anal-
ysis, i.e. exons part of different isoforms introduce a bias in the counts. For
that reason, it might be better to have a first look at the data, summarized
by genes. This, however, requires to combine all the alternative exons and

20

UTRs present for every gene into a “gene model”; i.e. overlapping exons are
merged into“synthetic” ones. This is what is performed when the arguments
“count” and “summarization” are set to “genes” and “geneModels”, respec-
tively. A caveat not addressed by this procedure are genes overlapping on
the same or opposite strands. If this occurs a warning will be emitted. If
the reads were summarized by “geneModels” and the “outputFormat” argu-
ment was set to “RNAseq”, one can use the “geneModel” accessor on the
obtained object to access the computed gene models. They are stored in
an RangedData object and can be modified to address the caveat previously
mentioned. To be strict, one would remove every overlapping loci and con-
serve only the other ones. Such a modified annotation can then be saved
and used for the next easyRNASeq run.
It is not possible yet to summarize by “geneModels” using the geneCounts

function. A meaningful error message is thrown if the geneCounts is used
for that purpose.

> try(geneCounts(rnaSeq,summarization='geneModels'))

This behavior will be corrected in the next release. At the moment, this
has to be done using the easyRNASeq function directly.

> rnaSeq2 <- easyRNASeq(system.file(

+ "extdata",

+ package="RnaSeqTutorial"),

+ organism="Dmelanogaster",

+ readLength=30L,

+ annotationMethod="rda",

+ annotationFile=system.file(

+ "data",

+ "gAnnot.rda",

+ package="RnaSeqTutorial"),

+ count="genes",

+ summarization="geneModels",

+ pattern="[A,C,T,G]{6}\\.bam$",

+ outputFormat="RNAseq")

> head(readCounts(rnaSeq2,'genes','geneModels'))

21

4.7 optional normalization

In this section, the different“normalization”available will be described. First
the RPKM, even though this cannot be considered as a proper normalization
based on sound statistical models, but is rather a kind of common sense“cor-
rection” that one can apply to the data. This implies normalizing the read
counts depending on the genic feature size (exon, transcript, gene model,...)
and on the total number of reads sequenced for that library. I would not
recommend to use it for doing any kind of differential expression analysis,
but it’s definitely sufficient to create tracks to be displayed in a genome
browser in order to get a feel when comparing different sample visually.

> count.table <- easyRNASeq(system.file(

+ "extdata",

+ package="RnaSeqTutorial"),

+ organism="Dmelanogaster",

+ readLength=30L,

+ annotationMethod="rda",

+ annotationFile=system.file(

+ "data",

+ "gAnnot.rda",

+ package="RnaSeqTutorial"),

+ count="exons",

+ filenames=c("ACACTG.bam", "ACTAGC.bam",

+ "ATGGCT.bam", "TTGCGA.bam"),

+ normalize=TRUE

+)

In addition, easyRNASeq count tables can be easily transformed into
RPKM, by using the RPKM method:

> feature.size = width(genomicAnnotation(rnaSeq))

> names(feature.size) = genomicAnnotation(rnaSeq)$exon

> lib.size=c(

+ "ACACTG.bam"=56643,

+ "ACTAGC.bam"=42698,

+ "ATGGCT.bam"=55414,

+ "TTGCGA.bam"=60740)

> head(RPKM(readCounts(rnaSeq,summarization="exons")$exons,

+ NULL,

+ lib.size=lib.size,

+ feature.size=feature.size))

ACACTG.bam ACTAGC.bam ATGGCT.bam TTGCGA.bam

CG11023:1 0.0000 0.0000 0.0000 0.00000

22

CG11023:2 0.0000 0.0000 0.0000 0.00000

CG11023:3 0.0000 0.0000 0.0000 19.98012

CG2671:1 0.0000 0.0000 0.0000 0.00000

CG2671:2 129.8120 0.0000 0.0000 121.05600

CG2671:3 294.6183 240.5166 254.8213 253.61153

The same can be directly done on object of the RNAseq class.

> head(RPKM(rnaSeq,from="transcripts"))

ACACTG.bam ACTAGC.bam ATGGCT.bam TTGCGA.bam

FBtr0005009 NA NA NA NA

FBtr0005088 NA NA NA NA

FBtr0005673 NA NA NA NA

FBtr0005674 NA NA NA NA

FBtr0006151 NA NA NA NA

FBtr0070000 NA NA NA NA

> head(RPKM(rnaSeq2,from="geneModels"))

A better way of normalizing the data is to use either the edgeR or DESeq
packages, provided you have got enough replicates.

DESeq To be able to normalize the data using DESeq (or edgeR for that
matter), one needs to define the samples’ “conditions”, e.g. “disease” vs.
“healthy”. To ensure traceability, the easyRNASeq package require the con-
ditions to be a named vector where the names are the raw data filenames.

> conditions=c("A","A","B","B")

> names(conditions) <- c("ACACTG.bam", "ACTAGC.bam",

+ "ATGGCT.bam", "TTGCGA.bam")

Once the conditions have been defined, one can call the easyRNASeq

function with the outputFormat argument set to DESeq. The normalize

argument precise whether or not to perform the normalization implemented
in DESeq . If either case, a CountDataSet object is returned containing or
not normalized values. Here, in addition, we precise the kind of fit that
needs to be performed by the estimateDispersion function of the DESeq
package. Since we have so few data, the default fit would fail and we would
get an error telling us to change the fitType argument. As a consequence,
we set that argument to local.

> countDataSet <- easyRNASeq(system.file(

+ "extdata",

+ package="RnaSeqTutorial"),

23

+ organism="Dmelanogaster",

+ readLength=30L,

+ annotationMethod="rda",

+ annotationFile=system.file(

+ "data",

+ "gAnnot.rda",

+ package="RnaSeqTutorial"),

+ count="exons",

+ filenames=c("ACACTG.bam", "ACTAGC.bam",

+ "ATGGCT.bam", "TTGCGA.bam"),

+ normalize=TRUE,

+ outputFormat="DESeq",

+ conditions=conditions,

+ fitType="local"

+)

Note that the plot produced here are irrelevant since the dataset is too
small. You can turn the plotting off by setting the plot argument to FALSE.
Have a look at the DESeq vignette (essential if you plan to use DESeq
anyway!) for proper explanation about these.

edgeR Here we perform the same procedure as that described for the
DESeq in the paragraph above, using the edgeR instead. We simply use
“edgeR” as the value to the “outputFormat” argument.

> dgeList <- easyRNASeq(system.file(

+ "extdata",

+ package="RnaSeqTutorial"),

+ organism="Dmelanogaster",

+ readLength=30L,

+ annotationMethod="rda",

+ annotationFile=system.file(

+ "data",

+ "gAnnot.rda",

+ package="RnaSeqTutorial"),

+ count="exons",

+ filenames=c("ACACTG.bam", "ACTAGC.bam",

+ "ATGGCT.bam", "TTGCGA.bam"),

+ normalize=TRUE,

+ outputFormat="edgeR",

+ conditions=conditions

+)

As mentioned in the former paragraph about DESeq (4.7, page 23, the
plots generated here are only semi-relevant. Check out the edgeR package

24

vignette for more details about these plots. See in particular chapter 10
(edgeR v2.3.24, R v2.14.0). Note that producing the plots is rather slow.

Next steps At this stage you are done with the normalization and what’s
ahead of you: calling differential expression, exporting track files for visu-
alization, etc. is not the scope of the easyRNASeq package. This one has
a few more functionalities, the most important of which will be described
in the next section. To proceed with your data analysis, check the relevant
package vignettes (DESeq , edgeR) for differential expression calling and the
RnaSeqTutorial for examples of track files generation using the rtracklayer
package.

4.8 Performance

As of version 1.3.8, it is possible to parallelize some additional steps in the
workflow. So far, only the generation of the geneModel could be parallelized.
As of now, the actual read counting and summarization can be parallelized
too. To achieve this, the ’nbCore’ argument simply has to be set to the
number of CPU cores, one wants to use. There are a number of word of
caution though:

1. CPU cores means CPU cores, i.e. located on the same physical ma-
chine. Do not expect it to work across machines.

2. there’s no load nor memory management, so watch out yourself for it.
Memory will scale linearly with the number and size of read libraries
(e.g. bam files) you process in parallel.

3. It’s using the R ’parallel’ package, so it’s supported on all three main
OS. However, some cosmetic reporting might get lost.

That’s it for the cautionary part. And despite these, try it, you’ll get a time
boost and that’s worth monitoring CPU and RAM for a while.

25

5 Advanced usage

In this section we will discuss about more advanced RNA-Seq pre-processing,
such as de-multiplexing, or the de novo identification of expressed regions.
The same can be directly done on object of the RNAseq class.

5.1 De-multiplexing samples

Nowadays, NGS machines produces such huge quantity of“raw” reads (40M,
100M and 160M per Illumina GAIIx, ABI SOLiD4 or Illumina HiSeq lanes
(or equivalent), respectively), that the coverage obtained per lane for the
transcriptome of “small” genome-sized organisms, is for a single sample es-
sentially a waste of resource. E.g. one lane of HiSeq results in an approxi-
mate 2,800X coverage if the Saccharomyces cerevisiae genome which is 12Mb
large. Therefore, techniques to have several samples running as a single li-
brary have been created [Lefrançois et al., 2009, Smith et al., 2010], using
4-6bp barcodes to uniquely identify the sample. This is called multiplex-
ing and one can today with an average Illumina GenomeAnalyzer GAIIx
average run (105bp read, single end), multiplex 48 yeast samples in a sin-
gle lane at an almost 30X coverage. This approach is very advantageous
for researchers, especially in term of costs, but it adds an additional layer
of pre-processing that is not as trivial to process as one would think. Ex-
tracting the barcodes would be fairly straightforward, but for the average
0.1 percent sequencing error rate that introduces a lot of multiplicity in the
actual barcodes present in the samples. A proper design of the barcodes,
maximizing the Hamming distance[Hamming, 1950, Pilcher et al., 2008] is
an essential step for a proper de-multiplexing.
There are two kinds of barcoding, the one described in Lefrançois et al.
[2009] where the barcode is part of the read sequence and the one developed
by Illumina, where the barcode is read in a separate sequencing reaction
after the first mate sequencing.
The data used in the following example has been sequenced using the Illu-
mina protocol. We’ll look at the specificities that this introduce.

Important Note: This pre-processing procedure has to be applied on
the raw reads before any alignment is performed. Most often, one would
use the “fastq” formatted file as input. In the particular case of the Illumina
protocol, the barcodes can be retrieved from the fastq ID lines or from the
Illumina export format. The export format is normally the result of aligning
the reads with ELAND, the Illumina aligner, but it can be generated as well
without aligning the reads, i.e. the export file may not contain any alignment
information. As the ShortRead package offers a quick functionality to access
the barcode field of an export file, we use this example to introduce it.

> alns <- readAligned(

+ system.file(

26

+ "extdata",

+ package="RnaSeqTutorial"),

+ pattern="multiplex_export",

+ filter=compose(

+ chastityFilter(),

+ nFilter(2),

+ chromosomeFilter(regex="chr")),

+ type="SolexaExport",

+ withAll=TRUE)

Note the use of the withAll argument. It is essential to get the bar-
code, since this data was multiplexed using the Illumina protocol. For the
Illumina protocol, the barcode is read in a separate sequencing reaction and
its sequence is reported as a field of the export file. This field is not parsed
by default by the readAligned to save time and memory. It becomes avail-
able when the data is loaded using thewithAll argument and is afterwards
accessible in the metadata of the returned object. It can be accessed using
the following command:

> alignData(alns)$multiplexIndex

where alns is the object of the ShortRead AlignedRead class.

In the following, we will look at the other kind of barcoding, where the
barcode is part of the sequenced sequence. First, we will create some plots
to evaluate the barcoding efficiency.

> barcodes=c("ACACTG","ACTAGC","ATGGCT","TTGCGA")

> barcodePlot(alns,

+ barcodes=barcodes,

+ type="within",

+ barcode.length=6,

+ show.barcode=20,

+ main="All samples",

+ xlim=c(0,0.5))

27

ACACCG
ACACTA
ATGGGT
ACAATG
ACACTT
ATAGCT

ACTCGC
ATGCGA
TGGCTG
ATGCCT
ATACTG

ACAGTG
ACACAG
ACACGG
ACACTC
TGCGAT
ACTAGC
ACACTG
ATGGCT
TTGCGA

0.5 0

barcodes frequency

All samples

All the barcodes seem to be almost equally distributed. Every one has a
proportion close to 25%. Just the “ACTAGG” seems to have been either less
amplified during the library preparation or simply had a lower concentration
than the other or generated less clusters. Overall, only a low percentage of
them cannot be surely assigned. Once this has been verified, the sample can
be demultiplexed.

> dem.alns <- demultiplex(alns,

+ barcodes=barcodes,

+ edition.dist=2,

+ barcodes.qty=4,

+ type="within")

> dem.alns$reads[[1]]

> dem.alns$barcodes[[1]]

Remains to write the extracted data to file, or proceed it within R.
Again performing some validation plot is important to ensure that the de-
multiplexing process succeeded.

> par(mfrow=c(2,2))

> barcode.frequencies <- lapply(

+ names(dem.alns$barcodes),

28

+ function(barcode,alns){

+ barcodePlot(

+ alns$barcodes[[barcode]],

+ barcodes=barcode,

+ type="within",barcode.length=6,

+ show.barcode=20,

+ main=paste(

+ "Expected barcode:",

+ barcode))

+ },dem.alns)

TTACTG
ACGCTG
GCACTG
ATACCG
ACACCT
ACACTN
TCACTG
ACACGA
NCACTG
ACACNN
ACACCG
ACACTA
ACAATG
ACACTT
ATACTG

ACAGTG
ACACAG
ACACGG
ACACTC
ACACTG

1 0.5 0

barcodes frequency

Expected barcode: ACACTG
AGTAGC
ACCAGC
AATAGC
CCTAGC

ACGCGC
ACTAGN
ACTAGG
TCTAGC
ACTAGT
ACTACC

ACGAGC
ACTANN
GCTAGC
ATTAGC

NCTAGC
ACTATC
ACTAGA
ACAAGC
ACTCGC
ACTAGC

1 0.5 0

barcodes frequency

Expected barcode: ACTAGC

ATGGTT
ATGGCG
ATGCTT

CTGGCT
ATGACT

AAGGCT
ATGGCC
ATGGCN
ATGGCA
GTGGCT
TTGGCT
ATGTCT
ATTGCT

ATGGNN
ACGGCT
NTGGCT
ATGGGT
TGGCTG
ATGCCT
ATGGCT

1 0.5 0

barcodes frequency

Expected barcode: ATGGCT
TCACGA
TTTAGA

ACGCGA
TTGCGG
ATGCGG
TTGCGT
TTGGGA
TCGCGA
TTGCGN
TTGCCA
TTGCGC
TTTCGA
TTGCTA
TTGAGA
TTGCNN
TTACGA

NTGCGA
ATGCGA
TGCGAT
TTGCGA

1 0.5 0

barcodes frequency

Expected barcode: TTGCGA

Here we see the demultiplexed barcodes. It’s important to assess if within
a given sample, there was a barcode bias. Generally, visually assessing the
data is important to make sure that the raw data you are looking at agrees
with the experimental design that was performed. This is discussed in the
RnaSeqTutorial vignette of the RnaSeqTutorial .
Finally, we can save the demultiplexed files to disk.

> status <- lapply(

+ names(dem.alns$barcodes),

+ function(barcode,alns){

+ writeFastq(

+ alns$reads[[barcode]],

29

+ file=paste(

+ barcode,

+ "fastq",sep="."))

+ },dem.alns)

The fastq files are now ready to be aligned with your preferred aligner and
the resulting bam files processed with the easyRNASeq function as described
in the first part of the present vignette! Enjoy.

30

6 Yet to come

The easyRNASeq can now return a SummarizedExperiment object. The
aim is to have it be the only output in the next development version of the
easyRNASeq package (version 1.5.x). This in order to consolidate the kind of
objects used for Next-Generation Sequencing in the Bioconductor repository
(rather ambitious, yes). For this, as of version 1.3.14, a new function: count
has been introduced that supersedes the easyRNASeq function. An example
follows, however the parameters -currently alike those of the easyRNASeq -
will be refined in order to consolidate and structure them, so do not rely on
them for writing production code.

> ## creating a SummarizedExperiment from 4 bam files

> sumExp <- count(filesDirectory=system.file(

+ "extdata",

+ package="RnaSeqTutorial"),

+ pattern="[A,C,T,G]{6}\\.bam$",

+ readLength=30L,

+ organism="Dmelanogaster",

+ chr.sizes=seqlengths(Dmelanogaster),

+ annotationMethod="rda",

+ annotationFile=system.file(

+ "data",

+ "gAnnot.rda",

+ package="RnaSeqTutorial"),

+ count="exons"

+)

> ## the counts

> assays(sumExp)

> ## the sample info

> colData(sumExp)

> ## the 'features' info

> rowData(sumExp)

>

See the GenomicRange package SummarizedExperiment class for more
details on last three accessors used in the example.

31

7 Use Cases

The following use cases have been created to answer user request from the
Bioconductor mailing list. We want to thank Francesco Lescai, Wade Davis
and Richard Friedman for asking pertinent questions that helped us make
this vignette better.
The first use case examplify how to use the easyRNASeq to get DESeq nor-
malized data from two human samples. It introduces as well how to use
the GenomicFeatures to retrieve annotations. Note that the data for this
example is not readily available. If you want to reproduce this example, you
will need to get 2 (at least) fastq files from either the SRA or ENA websites
and align them against the human genome using your aligner of choice and
convert the alignment into the BAM format. An example of how to achieve
this in R is described in the beginning of the use case.
The second use case describe how to combine different annotation (chromo-
somic and genic), when for example the chromosome names in the aligned
file(s) are different from the annotation retrieved using (biomaRt. In both
use case, we will assume the easyRNASeq library as already been loaded as
in:

> library(easyRNASeq)

Processing a set of human samples

Getting the data If you already have a set of bam files resulting of
short read alignments against the human genome, you can just proceed to
the next paragraph. If not here is an example on how to retrieve and align
data in R. Note that the Rsubread is only supported on the linux platform.
You’ll need to use your aligner of choice and generate BAM files if you’re
using another platform. However you should still be able to download the
SRA/ENA files. The files listed in this example are from the Jääger et al.
[2012] study, but where simply selected for their small size. Still downloading
and creating all the necessary file requires times and a computer with a
sufficient amount of memory to index the human genome.

> library(BSgenome.Hsapiens.UCSC.hg19)

> library(GEOquery)

> library(SRAdb)

> library(Rsamtools)

> library(Rsubread)

> ## create a temp dir

> dir.create(file.path(getwd(),"tmp1234"))

> ## change the working directory

> setwd(file.path(getwd(),"tmp1234"))

32

> ## init SRA

> sqlfile <- getSRAdbFile()

> ## init a connection

> sra_con <- dbConnect(SQLite(),sqlfile)

> ## list the files

> acc <- c("SRR490224","SRR490225")

> getFASTQinfo(in_acc = acc, srcType = 'ftp')

> ## get the read files

> getSRAfile(in_acc=acc, sra_con, destDir = getwd(),

+ fileType = 'fastq', srcType = 'ftp')

> ## close the connection

> dbDisconnect(sra_con)

> ## write the human genome sequences

> writeXStringSet(Reduce(append,

+ lapply(seqnames(Hsapiens),

+ function(nam){

+ dss <- DNAStringSet(unmasked(Hsapiens[[nam]]))

+ names(dss) <- nam

+ dss

+ })),

+ file="hg19.fa")

> ## create the indexes

> dir.create("indexes")

> buildindex(basename=file.path("indexes","hg19"),

+ reference="hg19.fa")

> ## align the reads

> sapply(dir(pattern="*\\.gz$"),function(fil){

+ ## decompress the files

+ gunzip(fil)

+

+ ## align

+ align(index=file.path("indexes","hg19"),

+ readfile1=sub("\\.gz$","",fil),

+ nsubreads=2,TH1=1,

+ output_file=sub("\\.fastq\\.gz$","\\.sam",fil)

+)

+

+ ## create bam files

+ asBam(file=sub("\\.fastq\\.gz$","\\.sam",fil),

+ destination=sub("\\.fastq\\.gz$","",fil),

+ indexDestination=TRUE)

+ })

>

33

Note that this has generated a number of files that you should clean up
afterwards, i.e. delete the “tmp1234” folder, once you are done with the use
case.

Processing the data First, we start by retrieveing the size of the
chromosomes. This is an important information for calculating any feature
count. Actually, neither the BSgenome nor any related packages are required
for easyRNASeq to run. As they are the easiest way to access genomic infor-
mation such as chromosome lengths within the R/Bioconductor framework,
they are made available to the easyRNASeq for that purpose. However, pro-
viding a simple named vector is sufficient and therefore is easyRNASeq not
limited to existing BSgenome organisms. The chromosome size is essential
for one reason: to provide a complete representation of the data. When
counting reads per features, one get counts for these features that have at
least one read aligning to them, i.e. every feature having no reads will be
missed. One could then either return only those features having counts or
returning a value of 0 counts for those that do not. We do not find these
solutions satisfying and to ensure that we provide coherent data, we return
the counts for every feature present on the chromosomes. For that purpose,
the chromosome size is essential as it allows us to define those features on
a chromosome that are located between the last feature having a number
a count bigger or equal to one and the end of the chromosome - features,
which would otherwise be ignored. It is as well a mean to monitor that
the provided annotation is pertinent. As of version 1.3.5, when using the
’bam’ format, it is even easier. Setting the ’chr.sizes’ argument to auto
will result in the chromosome sizes to be retrieved from the BAM header.
However, the purpose of this use case is to, at least partly, demonstrate the
importance of using appropriate annotations and therefore the use of the
’chr.sizes’ argument is demonstrated.

> library(BSgenome.Hsapiens.UCSC.hg19)

> chr.sizes=seqlengths(Hsapiens)

Then, we list the BAM files.

> bamfiles=dir(getwd(),pattern="*\\.bam$")

We can now run the easyRNASeq function, fetching the annotation us-
ing biomaRt . As this is time consuming (about 10 minutes from an av-
erage network) and since we might want to work on these annotation to
avoid double-counting, we first ask the function to return an instance of the
RNAseq class. Then, using the genomicAnnotation accessor, we extract the
retrieved annotation. Note: As of version 1.3.5, ’bam’ is the default format.
Hence, the argument ’format’ has been removed from the following function
call.

34

> rnaSeq <- easyRNASeq(filesDirectory=getwd(),

+ organism="Hsapiens",

+ chr.sizes=chr.sizes,

+ readLength=58L,

+ annotationMethod="biomaRt",

+ count="exons",

+ filenames=bamfiles[1],

+ outputFormat="RNAseq"

+)

> gAnnot <- genomicAnnotation(rnaSeq)

As one can see by looking at this object, it contains 434 “chromosomes”,
most of which are of no interest to us. For that reason, we first filter it and
then save it to the disk for later re-use. The “.rda” extension is a synonym
of the “.RData” one and identifies a serialized R data file.

> gAnnot <- gAnnot[space(gAnnot) %in% paste("chr",c(1:22,"X","Y","M"),sep=""),]

> save(gAnnot,file="gAnnot.rda")

Now using the modified, saved annotation, we can get a count table as
follows:

> countTable <- easyRNASeq(filesDirectory=getwd(),

+ organism="Hsapiens",

+ chr.sizes=chr.sizes,

+ readLength=58L,

+ annotationMethod="rda",

+ annotationFile="gAnnot.rda",

+ count="exons",

+ filenames=bamfiles[1]

+)

Another way to retrieve the annotation is to use the GenomicFeatures
library. easyRNASeq does not yet supports that library automatically, but
it can take GRangesList object as input; objects that are derivatives of
the ones returned by the functions of the GenomicFeatures package. A few
changes needs to be done to the obtained object so that it can be used by
the easyRNASeq: first, a metadata element needs to be updated and then
the object needs to be converted into a GRangesList.

> library(GenomicFeatures)

> hg19.tx <- makeTranscriptDbFromUCSC(

+ genome="hg19",

+ tablename="refGene")

> gAnnot <- exons(hg19.tx)

35

> colnames(elementMetadata(gAnnot)) <- "exon"

> gAnnot <- split(gAnnot,seqnames(gAnnot))

As previously, this annotation could be saved to disk or can as well be
used directly, using the annotationMethod ”env” and the annotationOb-

ject arguments. Additionaly, one can select chromosome of interest using
the chr.sel argument. It accepts a vector of chromosome names. In the
following, we subset for the chromosome “chr1” only.

> countTable <- easyRNASeq(filesDirectory=getwd(),

+ organism="Hsapiens",

+ readLength=58L,

+ annotationMethod="env",

+ annotationObject=gAnnot,

+ count="exons",

+ filenames=bamfiles[1],

+ chr.sel="chr1"

+)

Note that in the previous call, we removed the ’chr.sizes’ argument, just
to demonstrate that the chr.sizes can be retrieved from the bam files. Re-
moving the argument is the same as setting it to its default value: ’auto’

Alternatively, one can use the count function to get a SummarizedEx-
periment object back. Mind the comments in section 6, page 31 though.

> sumExp <- count(filesDirectory=getwd(),

+ organism="Hsapiens",

+ readLength=58L,

+ annotationMethod="env",

+ annotationObject=gAnnot,

+ count="exons",

+ filenames=bamfiles[1],

+ chr.sel="chr1"

+)

Finally, instead of returning a count table, we can get a CountDataSet

instance from the DESeq package. This will perform the normalization of the
data and generate some Quality Assessment plots. In the present example,
it would not yield very sensitive results as we have no replicates (biologi-
cal). These are important to DESeq to accurately model the technical and
biological variance. With no replicates for every condition, the dispersion
will be based on a ”pooled” estimate making the differential expression call
lose sensitivity. In addition, DESeq is in such cases using a conservative
approach (which is good) so you’d get even less significant results. Here, as
we have no replicates, we need to pass additional arguments (the last two)

36

that will be tunnelled to the DESeq estimateDispersions function. See
the DESeq vignette for more details on these.

> conditions <- c("A","B")

> names(conditions) <- bamfiles

> countDataSet <- easyRNASeq(filesDirectory=getwd(),

+ organism="Hsapiens",

+ chr.sizes=chr.sizes,

+ annotationMethod="env",

+ annotationObject=gAnnot,

+ count="exons",

+ filenames=bamfiles,

+ chr.sel="chr1",

+ outputFormat="DESeq",

+ normalize=TRUE,

+ conditions=conditions,

+ fitType="local",

+ method="blind"

+)

Note that as the read length differs between the two files: 58 and 76, the
readLength argument was removed from the previous function call. The
read size is then identified automatically.

Dealing with annotation inconsistencies This use case shows how
to deal with inconsistent annotations, e.g. when the chromosome names
present in the aligned file are different from those that can be retrieved from
an annotation source such as biomaRt .
First, we have a look at the data, in this case some Illumina export files.
Reading in the data using the ShortRead package is quite resource demand-
ing as the whole sequences are loaded in memory. Then we look at the
chromosome names. These differs from what we expect - UCSC standards -
as they have an additional “.fa” extension.

> aln <- readAligned("data",type="SolexaExport",pattern="*.txt.gz")

> gc()

> levels(chromosome(aln))

[1] "chr1.fa" "chr10.fa" "..." "chrY.fa"

They are different from what biomaRt will return as well: i.e. 1:19,
X, Y and MT plus others. This triple inconsistency will be a problem for
easyRNASeq . If there were only two sets of names, using the ”custom” chro-
mosome name map by-pass (see the Details section of the “?easyRNASeq”
help page) would solve the issue. However, in the present particular case, as

37

we are retrieving the annotation from biomaRt , we need to precise the name
of the organism, which circumvent the chromosome name mapping by-pass.
The solution is to first fetch the annotation, modify it and save it as an R
data file. Some of the retrieved annotation are “NT” contigs. There are only
a few of them, so instead of filtering them out, we just ignore them.

> obj <- fetchAnnotation(new('RNAseq',
+ organismName="Mmusculus"

+),

+ method="biomaRt")

> gAnnot <- genomicAnnotation(obj)

> length(grep("NT_",space(gAnnot)))

>

[1] 1181

> names(gAnnot) <- paste("chr",names(gAnnot),".fa",sep="")

As described previously, see page 35 we can save the annotation to a file
or use it directly, using the AnnotationMethod“env”argument. In that later
case, since we did not process the annotation, numerous warnings concerning
possible multiple countings of reads will be raised. Double counting reads is
not what ones want, that is why the better way is to rework the obtained
annotation to remove/clarify these cases and save the obtained annotation
as an rda file on your file system.
Note that easyRNASeq does support some chromosome names conversion
by default. The list of organism for which this is possible can be listed using
the knownOrganisms function.
Before going on, we do some cleanup as some of the objects we have gener-
ated take large amounts of memory.

> rm(aln,obj)

> gc()

As on page 34 we get the chromosome sizes. Again, note that the use
of the BSgenome is not mandatory. It’s just easy as they are available in
Bioconductor. Typing in your own chromosome sizes named vector is as
valid.

> library(BSgenome.Mmusculus.UCSC.mm9)

> chr.sizes<- seqlengths(Mmusculus)

Note that now, providing the chromosome sizes as a list is deprecated.
It has been changed to a named vector, which is more intuitive. The list
was an historical remnant of the RangedData API. Note as well that the
chr.sizes will be necessary here as we are using ’aln’ files and not ’bam’ files.
We can now create the chromosome name mapping.

38

> chr.map <- data.frame(

+ from=paste("chr",c(1:19,"X","Y"),".fa",sep=""),

+ to=paste("chr",c(1:19,"X","Y"),sep=""))

Using this chromosome map, we can now summarize the reads per fea-
ture of interest. Here we want to look for gene models, so we set the count

and summarization argument. Note again that the summarization argu-
ment will be deprecated in the near future and its values merged with the
count ones.
Asking to get back an RNAseq instance allows us to look at the gene models
defined by easyRNASeq . This offers the possibility to clean them to avoid
multiple counting. An additional use case describing how to do this will be
introduced soon.
As we are provided with Illumina export data, we need to define a set of
Filter to ensure that the data is read properly. Indeed, the export file con-
tains all the reads, so the one that do not pass the chastity filter have to be
removed. In addition, some of the other reads are for internal QC, and they
have no position. For that reason, we need to filter those too out.
Reading in export data is more resource exhausting that reading in bam files,
as we are loading in the sequence and quality information as well, whereas
we do not need them.
We will now look through three different set of parameters that will stepwise
reduce the number of warnings emitted. These warnings are there to help
you understand the different pitfalls that the easyRNASeq helps you avoiding
when analysing your RNA-Seq data. The first approach generates a lot of
warnings, because of the differing annotations, since we are using the entire
set of annotation we got. As we do not want to generate all these warnings,
these code lines are not evaluated. To get a feel about these warnings, they
will look as the follows:

Warning messages:

1: In .convertToUCSC(names(genomicAnnotation(obj)), organismName(obj), :

Your custom map does not define a mapping for the following

chromosome names: chrMT.fa

2: In easyRNASeq(filesDirectory = headDir, organism = "custom", chr.map = chr.map, :

There are 6096 synthetic exons as determined from your annotation that overlap!

This implies that some reads will be counted more than once!

Is that really what you want?

Let us start with the full set of annotation.

> rnaSeq <- easyRNASeq(filesDirectory="data",

+ organism="custom",

+ chr.map=chr.map,

+ chr.sizes=chr.sizes,

39

+ filter=compose(

+ naPositionFilter(),

+ chastityFilter()),

+ readLength=50L,

+ annotationMethod="env",

+ annotationObject=gAnnot,

+ format="aln",

+ count="genes",

+ summarization= "geneModels",

+ filenames="1-Feb_ATCACG_L003_R1_001_export.txt.gz",

+ outputFormat="RNAseq",

+ nbCore=2

+)

To reduce the number of warnings emitted, we can select for the chro-
mosome we are interested in as previously done on page 36.

> rnaSeq <- easyRNASeq(filesDirectory="data",

+ organism="custom",

+ chr.map=chr.map,

+ chr.sizes=chr.sizes,

+ chr.sel=chr.map$from,

+ filter=compose(

+ naPositionFilter(),

+ chastityFilter()),

+ readLength=50L,

+ annotationMethod="env",

+ annotationObject=gAnnot,

+ format="aln",

+ count="genes",

+ summarization= "geneModels",

+ filenames="1-Feb_ATCACG_L003_R1_001_export.txt.gz",

+ outputFormat="RNAseq",

+ nbCore=2

+)

Finally, to further reduce the warnings, we can manipulate the RangedData
object to remove the unnecessary annotation.

> sel <- grep("NT_",names(gAnnot))

> gAnnot <- RangedData(ranges=ranges(gAnnot)[-sel,],values=values(gAnnot)[-sel,])

> colnames(gAnnot) <- gsub("values\\.","",colnames(gAnnot))

This last call will only generate two warnings, one that could be easily
dealt with (a complaint about the chrMT). The other one is about double
counting and it requires to adapt the annotation.

40

> rnaSeq <- easyRNASeq(filesDirectory="data",

+ organism="custom",

+ chr.map=chr.map,

+ chr.sizes=chr.sizes,

+ chr.sel=chr.map$from,

+ filter=compose(

+ naPositionFilter(),

+ chastityFilter()),

+ readLength=50L,

+ annotationMethod="env",

+ annotationObject=gAnnot,

+ format="aln",

+ count="genes",

+ summarization= "geneModels",

+ filenames="1-Feb_ATCACG_L003_R1_001_export.txt.gz",

+ outputFormat="RNAseq",

+ nbCore=2

+)

41

8 Session Information

The version number of R[R Development Core Team, 2009] and packages
loaded for generating the vignette were:

R version 2.15.1 (2012-06-22)

Platform: x86_64-apple-darwin10.8.0 (64-bit)

locale:

[1] en_GB.UTF-8/en_GB.UTF-8/en_GB.UTF-8/C/en_GB.UTF-8/en_GB.UTF-8

attached base packages:

[1] parallel stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] BSgenome.Dmelanogaster.UCSC.dm3_1.3.19

[2] RnaSeqTutorial_0.0.10

[3] easyRNASeq_1.3.14

[4] ShortRead_1.15.9

[5] latticeExtra_0.6-19

[6] RColorBrewer_1.0-5

[7] Rsamtools_1.9.28

[8] DESeq_1.9.11

[9] lattice_0.20-6

[10] locfit_1.5-8

[11] BSgenome_1.25.6

[12] GenomicRanges_1.9.54

[13] Biostrings_2.25.10

[14] IRanges_1.15.40

[15] edgeR_2.99.4

[16] limma_3.13.16

[17] biomaRt_2.13.2

[18] Biobase_2.17.6

[19] genomeIntervals_1.13.3

[20] BiocGenerics_0.3.1

[21] intervals_0.13.3

loaded via a namespace (and not attached):

[1] annotate_1.35.3 AnnotationDbi_1.19.28 bitops_1.0-4.1

[4] DBI_0.2-5 genefilter_1.39.0 geneplotter_1.35.1

[7] grid_2.15.1 hwriter_1.3 RCurl_1.91-1

[10] RSQLite_0.11.1 splines_2.15.1 stats4_2.15.1

[13] survival_2.36-14 tools_2.15.1 XML_3.9-4

42

[16] xtable_1.7-0 zlibbioc_1.3.0

43

9 Final remarks

RNA-seq is still maturating and a lot of new developments are to be ex-
pected. If you have any questions, comments, feel free to contact me: del-
homme at embl dot de.

44

References

Simon Anders and Wolfgang Huber. Differential expression analysis for
sequence count data. Genome Biology 2010 11:202, 11(10):R106, Oct
2010.

Nicolas Delhomme, Ismaël Padioleau, Eileen E Furlong, and Larsm Stein-
metz. easyrnaseq: a bioconductor package for processing rna-seq data.
Bioinformatics, Jul 2012. doi: 10.1093/bioinformatics/bts477.

Steffen Durinck et al. Biomart and bioconductor: a powerful link between
biological databases and microarray data analysis. Bioinformatics, 21(16):
3439–40, Aug 2005.

Paul Flicek et al. Ensembl 2011. Nucleic Acids Research, 39(Database issue):
D800–6, Jan 2011.

Robert C Gentleman et al. Bioconductor: open software development for
computational biology and bioinformatics. Genome Biology 2010 11:202,
5(10):R80, Jan 2004.

RW Hamming. Error detecting and error correcting codes. Bell System
Technical Journal, 29(2):147–160, 1950.

Kersti Jääger, Saiful Islam, Pawel Zajac, Sten Linnarsson, and Toomas Neu-
man. Rna-seq analysis reveals different dynamics of differentiation of hu-
man dermis- and adipose-derived stromal stem cells. PLoS ONE, 7(6):
e38833, Jan 2012.

Philippe Lefrançois et al. Efficient yeast chip-seq using multiplex short-read
dna sequencing. BMC Genomics, 10:37, Jan 2009.

Heng Li et al. The sequence alignment/map format and samtools. Bioin-
formatics, 25(16):2078–9, Aug 2009.

Martin Morgan et al. Shortread: a bioconductor package for input, quality
assessment and exploration of high-throughput sequence data. Bioinfor-
matics, 25(19):2607–8, Oct 2009.

Ali Mortazavi et al. Mapping and quantifying mammalian transcriptomes
by rna-seq. Nature Methods, 5(7):621–8, Jul 2008.

CD Pilcher et al. Inferring hiv transmission dynamics from phylogenetic
sequence relationships. PLoS Med, 5(3):e69, 2008.

R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria,
2009. URL http://www.R-project.org. ISBN 3-900051-07-0.

45

Mark D Robinson et al. edger: a bioconductor package for differential ex-
pression analysis of digital gene expression data. Bioinformatics, 26(1):
139–40, Jan 2010.

Andrew M Smith, Lawrence E Heisler, Robert P St Onge, Eveline Farias-
Hesson, Iain M Wallace, John Bodeau, Adam N Harris, Kathleen M Perry,
Guri Giaever, Nader Pourmand, and Corey Nislow. Highly-multiplexed
barcode sequencing: an efficient method for parallel analysis of pooled
samples. Nucleic Acids Research, May 2010.

C Trapnell et al. Tophat: discovering splice junctions with rna-seq. Bioin-
formatics, 25(9):1105–1111, May 2009.

Susan Tweedie et al. Flybase: enhancing drosophila gene ontology annota-
tions. Nucleic Acids Research, 37(Database issue):D555–9, Jan 2009.

46

