MSnbase: labelled and label-free MS2 data pre-processing, visualisation and quantification.

Laurent Gatto* and Sebastian Gibb

Computational Proteomics Unit University of Cambridge, UK

April 18, 2014

This vignette describes the functionality implemented in the MSnbase package. MSnbase aims at (1) facilitating the import, processing, visualisation and quantification of mass spectrometry data into the R environment (R Development Core Team, 2011) by providing specific data classes and methods and (2) enabling the utilisation of throughput-high data analysis pipelines provided by the Bioconductor (Gentleman et al., 2004) project.

Keywords: Mass Spectrometry (MS), proteomics, infrastructure, quantitative.

^{*}lg390@cam.ac.uk

Contents

1	Introduction						
2	Data	a structure and content	4				
	2.1	Importing experiments	4				
	2.2	MS experiments	6				
	2.3	Spectra objects	7				
	2.4	Reporter ions	8				
3	Plotting raw data						
	3.1	Default plots	9				
	3.2	Customising your plots	11				
4	Tan	dem MS identification data	13				
	4.1	Adding identification data	13				
	4.2	Filtering identification data	14				
5	Qua	lity control	15				
6	Data processing						
	6.1	Cleaning spectra	17				
	6.2	Focusing on specific MZ values	20				
7	MS ² isobaric tagging quantitation						
	7.1	Reporter ions quantitation	21				
	7.2	Importing quantitation data	25				
	7.3	Peak adjustments	25				
	7.4	Normalisation	27				
8	Feat	ture aggregation	29				
9	Lab	el-free MS^2 quantitation	32				
	9.1	Peptide counting	32				
	9.2	Spectral counting and intensity methods	33				
10	Qua	ntitative assessment of incomplete dissociation	34				
11	Con	nbining MSnSet instances	35				
	11.1	Combining identical samples	36				
	11.2	Combine different samples	38				
12	MS ¹	E data processing	42				
13	Sess	sion information	42				

Foreword

MSnbase is under active developed; current functionality is evolving and new features will be added. This software is free and open-source software. If you use it, please support the project by citing it in publications:

Laurent Gatto and Kathryn S. Lilley. MSnbase - an R/Bioconductor package for isobaric tagged mass spectrometry data visualization, processing and quantitation. Bioinformatics 28, 288-289 (2011).

You are welcome to contact me for questions, bugs, typos or suggestions about MSnbase. If you wish to reach a broader audience for general questions about proteomics analysis using R, you may want to use the Bioconductor mailing list¹.

¹https://stat.ethz.ch/mailman/listinfo/bioconductor

1 Introduction

MSnbase (Gatto and Lilley, 2012) aims are providing a reproducible research framework to proteomics data analysis. It should allow researcher to easily mine mass spectrometry data, explore the data and its statistical properties and visually display these.

MSnbase also aims at being compatible with the infrastructure implemented in Bioconductor, in particular Biobase. As such, classes developed specifically for proteomics mass spectrometry data are based on the eSet and Expression classes. The main goal is to assure seamless compatibility with existing meta data structure, accessor methods and normalisation techniques.

This vignette illustrates MSnbase utility using a dummy data sets provided with the package without describing the underlying data structures. More details can be found in the package, classes, method and function documentations. A description of the classes is provided in the MSnbase-development vignette.

Speed and memory requirements Raw mass spectrometry file are generally several hundreds of MB large and most of this is used for binary raw spectrum data. As such, data containers can easily grow very large and thus require large amounts of RAM. This requirement is being tackled by avoiding to load the raw data into memory and using on-disk random access to the content of mzXML/mzML data files on demand. When focusing on reporter ion quantitation, a direct solution for this is to trim the spectra using the trimMz method to select the area of interest and thus substantially reduce the size of the Spectrum objects. This is illustrated in section 6.2 on page 20 of the MSnbase-demo vignette.

The independent handling of spectra is ideally suited for parallel processing. The quantify method now performs reporter peaks quantitation in parallel. More functions are being updated.

2 Data structure and content

2.1 Importing experiments

MSnbase is able to import raw MS data stored in one of the XML-based formats as well as peak lists in the mfg format²

²Mascot Generic Format - http://www.matrixscience.com/help/data_file_help. html#GEN

Raw data The XML-based formats, mzXML (Pedrioli et al., 2004), mzData (Orchard et al., 2007) and mzML (Martens et al., 2010) can be imported with the readMSData function, as illstrated below (see ?readMSData for more details).

```
> file <- dir(system.file(package = "MSnbase", dir = "extdata"),
+ full.names = TRUE, pattern = "mzXML$")
> rawdata <- readMSData(file, msLevel = 2, verbose = FALSE)</pre>
```

Either MS1 or MS2 spectra can be loaded at a time by setting the msLevel parameter accordingly. In this document, we will use the itraqdata data set, provided with MSnbase. It includes feature metadata, accessible with the fData accessor. The metadata includes identification data for the 55 MS2 spectra.

Peak lists Peak lists can often be exported after spectrum processing from vendor-specific software and are also used as input to search engines. Peak lists in mgf format can be imported with the function readMgfData (see ?readMgfData for details) to create experiment objects. Experiments or individual spectra can be exported to an mgf file with the writeMgfData methods (see ?writeMgfData for details and examples).

Experiments with multiple runs Although it is possible to load and process multiple files serially and later merge the resulting quantitation data as show in section 11 (page 35), it is also feasible to load several raw data files at once. Here, we report the analysis of an LC-MSMS experiment were 14 liquid chromatography (LC) fractions were loaded using readMSData on a 32-cores servers with 128 Gb of RAM. It took about 90 minutes to read the 14 uncentroided mzXML raw files (4.9 Gb on disk in total) and create a 3.3 Gb raw data object (an MSnExp instance, see next section). Quantitation of 9 reporter ions (iTRAQ9 object, see 2.4) for 88690 features was performed in parallel on 16 processors and took 76 minutes. The resulting quantitation data was only 22.1 Mb and could easily be further processed and analysed on a standard laptop computer.

See also section 7.2 to import quantitative data stored in spreadsheets into R for further processing using MSnbase. The MSnbase-io vignette gives a general overview of MSnbase's input/ouput capabilites.

2.2 MS experiments

Raw data is contained in MSnExp objects, that stores all the spectra of an experiment, as defined by one or multiple raw data files.

```
> library("MSnbase")
> itraqdata
Object of class "MSnExp"
 Object size in memory: 1.87 Mb
- - - Spectra data - - -
 MS level(s): 2
Number of MS1 acquisitions: 1
 Number of MSn scans: 55
 Number of precursor ions: 55
 55 unique MZs
 Precursor MZ's: 401.74 - 1236.1
MSn M/Z range: 100 2069
MSn retention times: 19:9 - 50:18 minutes
--- Processing information ---
Data loaded: Wed May 11 18:54:39 2011
MSnbase version: 1.1.22
--- Meta data ---
phenoData
  rowNames: 1
  varLabels: sampleNames sampleNumbers
  varMetadata: labelDescription
Loaded from:
  dummyiTRAQ.mzXML
protocolData: none
featureData
  featureNames: X1 X10 ... X9 (55 total)
  fvarLabels: spectrum ProteinAccession ProteinDescription
    PeptideSequence
  fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
> head(fData(itraqdata))
    spectrum ProteinAccession
X1
           1
                          BSA
```

X10	10	ECA1422	
X11	11	ECA4030	
X12	12	ECA3882	
X13	13	ECA1364	
X14	14	ECA0871	
		ProteinDescription	PeptideSequence
X1		bovine serum albumin	NYQEAK
X10	glucose-1-phosphat	te cytidylyltransferase	VTLVDTGEHSMTGGR
X11	50S riboso	omal subunit protein L4	SPIWR
X12		chaperone protein DnaK	TAIDDALK
X13	succinyl-CoA	synthetase alpha chain	SILINK
X14	NADP-	-dependent malic enzyme	DFEVVNNESDPR

As illustrated above, showing the experiment textually displays it's content:

- Information about the raw data, i.e. the spectra.
- Specific information about the experiment processing³ and package version. This slot can be accessed with the processingData method.
- Other meta data, including experimental phenotype, file name(s) used to
 import the data, protocol data, information about features (individual
 spectra here) and experiment data. Most of these are implemented as in
 the eSet class and are described in more details in their respective manual pages. See ?MSnExp and references therein for additional background
 information.

The experiment meta data associated with an MSnExp experiment is of class MIAPE. It stores general information about the experiment as well as MIAPE (Minimum Information About a Proteomics Experiment) information (Taylor et al., 2007, 2008). This meta-data can be accessed with the experimentData method. When available, a summary of MIAPE-MS data can be printed with the msInfo method. See ?MIAPE for more details.

2.3 Spectra objects

The raw data is composed of the 55 MS spectra. The spectra are named individually (X1, X10, X11, X12, X13, X14, ...) and stored in a environment. They can be accessed individually with itraqdata[["X1"]] or itraqdata[[1]],

³this part will be automatically updated when the object is modified with it's *ad hoc* methods, as illustrated later

or as a list with spectra(itraqdata). As we have loaded our experiment specifying msLevel=2, the spectra will all be of level 2 (or higher, if available).

```
> sp <- itraqdata[["X1"]]
> sp

Object of class "Spectrum2"
Precursor: 520.8
Retention time: 19:9
Charge: 2
MSn level: 2
Peaks count: 1922
Total ion count: 26413754
```

Attributes of individual spectra or of all spectra of an experiment can be accessed with their respective methods: precursorCharge for the precursor charge, rtime for the retention time, mz for the MZ values, intensity for the intensities, ... see the Spectrum, Spectrum1 and Spectrum2 manuals for more details.

```
> peaksCount(sp)
[1] 1922
> head(peaksCount(itraqdata))
    X1    X10   X11   X12   X13   X14
1922 1376 1571 2397 2574 1829
> rtime(sp)
[1] 1149
> head(rtime(itraqdata))
    X1   X10   X11   X12   X13   X14
1149 1503 1664 1664 1664 1664
```

2.4 Reporter ions

Reporter ions are defined with the ReporterIons class. Specific peaks of interest are defined by a MZ value, a with around the expected MZ and a name

(and optionally a colour for plotting, see section 3). ReporterIons instances are required to quantify reporter peaks in MSnExp experiments. Instances for the most commonly used isobaric tags like iTRAQ 4-plex and 8-plex and TMT tags are already defined in MSnbase. See ?ReporterIons for details about how to generate new ReporterIons objects.

```
> iTRAQ4

Object of class "ReporterIons"
iTRAQ4: '4-plex iTRAQ' with 4 reporter ions
- 114.1 +/- 0.05 (red)
- 115.1 +/- 0.05 (green)
- 116.1 +/- 0.05 (blue)
- 117.1 +/- 0.05 (yellow)
```

3 Plotting raw data

3.1 Default plots

Spectra can be plotted individually or as part of (subset) experiments with the plot method. Full spectra can be plotted (using full=TRUE), specific reporter ions of interest (by specifying with reporters with reporters=iTRAQ4 for instance) or both (see figure 1).

It is also possible to plot all spectra of an experiment (figure 2). Lets start by subsetting the itraqdata experiment using the protein accession numbers included in the feature metadata, and keep the 6 from the BSA protein.

```
> sel <- fData(itraqdata)$ProteinAccession == "BSA"
> bsa <- itraqdata[sel]
> bsa

Object of class "MSnExp"
Object size in memory: 0.1 Mb
- - - Spectra data - - -
MS level(s): 2
Number of MS1 acquisitions: 1
Number of precursor ions: 3
3 unique MZs
```

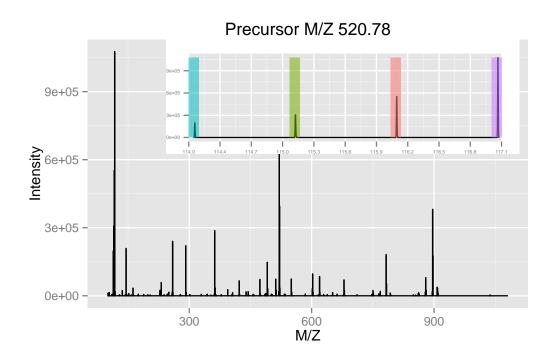


Figure 1: Raw MS2 spectrum with details about reporter ions.

```
Precursor MZ's: 434.95 - 651.92
MSn M/Z range: 100 1352
MSn retention times: 19:9 - 36:17 minutes
--- Processing information ---
Data loaded: Wed May 11 18:54:39 2011
Data [logically] subsetted 3 spectra: Fri Apr 18 22:55:47 2014
MSnbase version: 1.1.22
--- Meta data ---
phenoData
 rowNames: 1
  varLabels: sampleNames sampleNumbers
  varMetadata: labelDescription
Loaded from:
  dummyiTRAQ.mzXML
protocolData: none
featureData
  featureNames: X1 X52 X53
  fvarLabels: spectrum ProteinAccession ProteinDescription
    PeptideSequence
```

```
fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
> as.character(fData(bsa)$ProteinAccession)
[1] "BSA" "BSA" "BSA"
```

These can then be visualised together by plotting the MSnExp object, as illustrated on figure 2.

3.2 Customising your plots

The MSnbase plot methods have a logical plot parameter (default is TRUE), that specifies if the plot should be printed to the current device. A plot object is also (invisibly) returned, so that it can be saved as a variable for later use or for customisation.

MSnbase uses the ggplot2 package to generate figures, which can subsequently easily be customised. More details about ggplot2 can be found in Wickham (2009) (especially chapter 8) and on http://had.co.nz/ggplot2/. Finally, if a plot object has been saved in a variable p, it is possible to obtain a summary about the object with summary(p). To view the data frame used to generate the plot, use p@data.

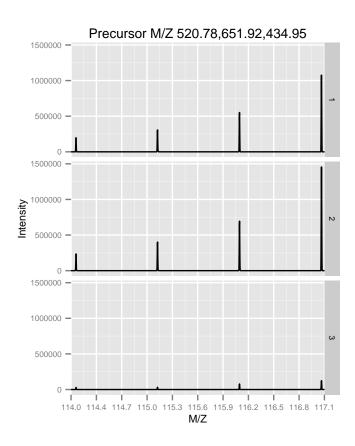


Figure 2: Experiment-wide raw MS2 spectra. The y-axes of the individual spectra are automatically rescaled to the same range. See section 7.4 to rescale peaks identically.

4 Tandem MS identification data

4.1 Adding identification data

MSnbase is able to integrate identification data from mzIdentML (Jones et al., 2012) files.

We first load two example files shipped with the MSnbase containing raw data (as above) and the corresponding identification results respectively. The raw data is read with the readMSData, as demonstrated above. As can be seen, the default feature data only contain spectra numbers⁴.

The addIdentificationData method takes an MSnExp instance (or an MSnSet instance storing quantitation data, see section 7.1) as first argument and one or multiple mzIdentML file names (as a character vector) as second one and updates the MSnExp feature data using the identification data read from the mzIdentML file(s).

⁴More data about the spectra is of course available in an MSnExp object, as illustrated in the previous sections. See also ?pSet and ?MSnExp for more details.

```
experimentalmasstocharge chargestate ms-gf:denovoscore
X1.1
            645.3741455078125
X2.1
            546.9586181640625
                                          3
                                                            39
     ms-gf:evalue ms-gf:rawscore ms-gf:specevalue
X1.1
            79.37
                              -39
                                          5.527e-05
X2.1
            13.47
                              -30
                                          9.399e-06
     assumeddissociationmethod isotopeerror
                                                         pepseq
X1.1
                            CID
                                            1 VESITARHGEVLQLRPK
X2.1
                            CID
                                            0
                                                  IDGQWVTHQWLKK
     modified modification isdecoy post pre end start
X1.1
                              FALSE
        FALSE
                         NA
                                        Α
                                            R 186
                                                    170
X2.1
        FALSE
                         NA
                              FALSE
                                            K 62
                                                     50
           accession length
X1.1 ECA0984; ECA3829
                         231
X2.1
             ECA1028
                         275
                                                                        description
X1.1 DNA mismatch repair protein; acetolactate synthase isozyme III large subunit
X2.1
              2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase
                 databaseFile identFile npsm
X1.1 erwinia_carotovora.fasta
                                             2
X2.1 erwinia_carotovora.fasta
                                             1
```

Finally we can use idSummary to summarise the percentage of identified features per quantitation/identification pairs.

```
> idSummary(msexp)

quantFile identFile coverage
1     1     2     0.6
```

4.2 Filtering identification data

One can remove the features that have not been identified using removeNoId. This function uses by default the pepseq feature variable to search the presence of missing data (NA values) and then filter these non-identified spectra.

```
> fData(msexp)$pepseq
[1] "VESITARHGEVLQLRPK" "IDGQWVTHQWLKK" NA
[4] NA "LVILLFR"
```

```
> msexp <- removeNoId(msexp)
> fData(msexp)$pepseq

[1] "VESITARHGEVLQLRPK" "IDGQWVTHQWLKK" "LVILLFR"

> idSummary(msexp)

quantFile identFile coverage
1 1 2 1
```

Similarly, the removeMultipleAssignment method can be used to filter out spectra that match peptides that have been assigned to multiple proteins. This function uses by default the npsm feature variable.

Note that removeNoId and removeMultipleAssignment methods can also be called on MSnExp instances.

5 Quality control

The current section is not executed dynamically for package size and processing time constrains. The figures and tables have been generated with the respective methods and included statically in the vignette for illustration purposes.

MSnbase allows easy and flexible access to the data, which allows to visualise data features to assess it's quality. Some methods are readily available, although many QC approaches will be experiment specific and users are encourage to explore their data.

The plot2d method takes one MSnExp instance as first argument to produce retention time vs. precursor MZ scatter plots. Points represent individual MS2 spectra and can be coloured based on precursor charge (with second argument z="charge"), total ion count (z="ionCount"), number of peaks in the MS2 spectra z="peaks.count") or, when multiple data files were loaded, file z="file"), as illustrated on figure 3. The lower right panel is produced for only a subset of proteins. See the method documentation for more details.

The plotDensity method illustrates the distribution of several parameters of interest (see figure 4). Similarly to plot2d, the first argument is an MSnExp instance. The second is one of precursor.mz, peaks.count or ionCount, whose density will be plotted. An optional third argument specifies whether the x axes should be logged.

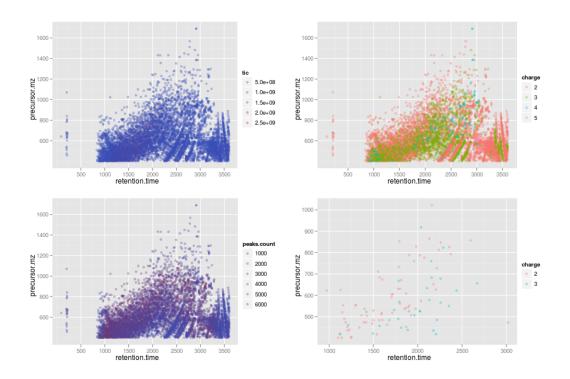


Figure 3: Illustration of the plot2d output.

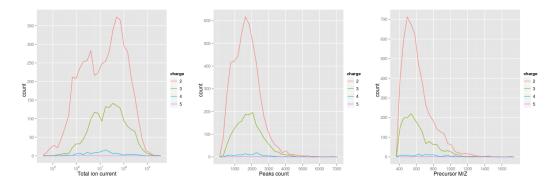


Figure 4: Illustration of the plotDensity output.

The plotMzDelta method⁵ implements the M/Z delta plot from Foster et al. (2011) The M/Z delta plot illustrates the suitability of MS2 spectra for identification by plotting the M/Z differences of the most intense peaks. The resulting histogram should optimally shown outstanding bars at amino acid residu masses. More details and parameters are described in the method documentation (?plotMzDelta). Figure 5 has been generated using the PRIDE experiment 12011, as in Foster et al. (2011).

In section 10 on page 34, we illustrate how to assess incomplete reporter ion dissociation.

⁵The code to generate the histograms has been contributed by Guangchuang Yu from Jinan University, China.

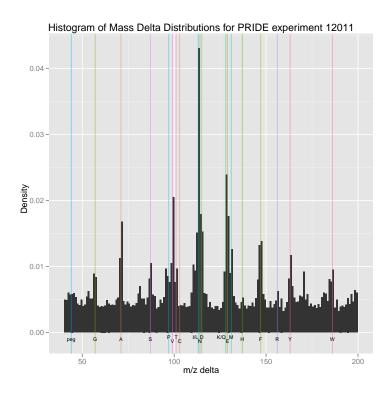


Figure 5: Illustration of the plotMzDelta output for the PRIDE experiment 12011, as in figure 4A from Foster et al. (2011).

6 Data processing

6.1 Cleaning spectra

There are several methods implemented to perform basic data manipulation. Low intensity peaks can be set to 0 with the removePeaks method from spectra or whole experiments. The intensity threshold below which peaks are removed is defined by the t parameter. t can be specified directly as a numeric. The default value is the character "min", that will remove all peaks equal to the lowest non null intensity in any spectrum. We observe the effect of the removePeaks method by comparing total ion count (i.e. the total intensity in a spectrum) with the ionCount method before (object itraqdata) and after (object experiment) for spectrum X55. The respective spectra are shown on figure 6 (page 18).

```
> experiment <- removePeaks(itraqdata, t = 400, verbose = FALSE)
> ## total ion current
> ionCount(itraqdata[["X55"]])

[1] 555409
```

```
> ionCount(experiment[["X55"]])
[1] 499770
```

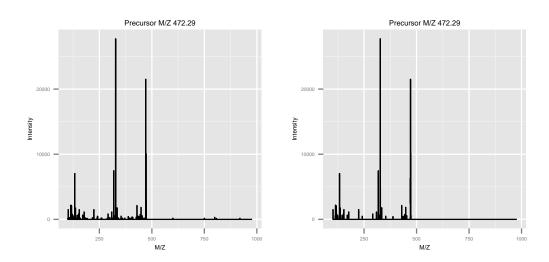


Figure 6: Same spectrum before (left) and after setting peaks j = 400 to 0.

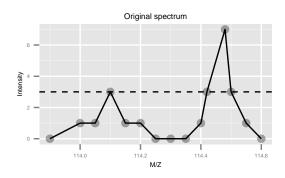
Unlike the name might suggest, the removePeaks method does not actually remove peaks from the spectrum; they are set to 0. This can be checked using the peaksCount method, that returns the number of peaks (including 0 intensity peaks) in a spectrum. To effectively remove 0 intensity peaks from spectra, and reduce the size of the data set, one can use the clean method. The effect of the removePeaks and clean methods are illustrated on figure 7 on page 19.

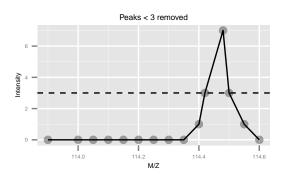
```
> ## number of peaks
> peaksCount(itraqdata[["X55"]])

[1] 1726
> peaksCount(experiment[["X55"]])

[1] 1726
> experiment <- clean(experiment, verbose = FALSE)
> peaksCount(experiment[["X55"]])

[1] 442
```





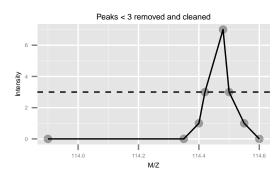


Figure 7: This figure illustrated the effect or the removePeaks and clean methods. The left-most spectrum displays two peaks, of max height 3 and 7 respectively. The middle spectrum shows the result of calling removePeaks with argument t=3, which sets all data points of the first peak, whose maximum height is smaller or equal to t to 0. The second peak is unaffected. Calling clean after removePeaks effectively deletes successive 0 intensities from the spectrum, as shown on the right plot.

6.2 Focusing on specific MZ values

Another useful manipulation method is trimMz, that takes as parameters and MSnExp (or a Spectrum) and a numeric mzlim. MZ values smaller then min(mzlim) or greater then max(mzmax) are discarded. This method is particularly useful when one wants to concentrate on a specific MZ range, as for reporter ions quantification, and generally results in substantial reduction of data size. Compare the size of the full trimmed experiment to the original 1.87 Mb.

```
> range(mz(itraqdata[["X55"]]))
[1] 100.0 977.7
> experiment <- trimMz(experiment, mzlim = c(112, 120))
> range(mz(experiment[["X55"]]))
[1] 113.1 117.1
> experiment
Object of class "MSnExp"
Object size in memory: 0.29 Mb
- - - Spectra data - - -
MS level(s): 2
Number of MS1 acquisitions: 1
Number of MSn scans: 55
Number of precursor ions: 55
55 unique MZs
Precursor MZ's: 401.74 - 1236.1
MSn M/Z range: 112 119.9
MSn retention times: 19:9 - 50:18 minutes
--- Processing information ---
Data loaded: Wed May 11 18:54:39 2011
Curves <= 400 set to '0': Fri Apr 18 22:55:49 2014
Spectra cleaned: Fri Apr 18 22:55:51 2014
MZ trimmed [112..120]
MSnbase version: 1.1.22
--- Meta data ---
phenoData
rowNames: 1
```

```
varLabels: sampleNames sampleNumbers
varMetadata: labelDescription

Loaded from:
   dummyiTRAQ.mzXML

protocolData: none

featureData
   featureNames: X1 X10 ... X9 (55 total)
   fvarLabels: spectrum ProteinAccession ProteinDescription
        PeptideSequence
   fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'
```

As can be seen above, all processing performed on the experiment is recorded and displayed as integral part of the experiment object.

7 MS² isobaric tagging quantitation

7.1 Reporter ions quantitation

Quantitation is performed on fixed peaks in the spectra, that are specified with an Reporterions object. A specific peak is defined by it's expected mz value and is searched for within $mz \pm width$. If no data is found, NA is returned.

```
> mz(iTRAQ4)
[1] 114.1 115.1 116.1 117.1
> width(iTRAQ4)
[1] 0.05
```

The quantify method takes the following parameters: an MSnExp experiment, a character describing the quantification method, the reporters to be quantified and a strict logical defining whether data points ranging outside of $mz \pm width$ should be considered for quantitation. Additionally, a progress bar can be displaying when setting the verbose parameter to TRUE. Three quantification methods are implemented, as illustrated on figure 8: trapezoidation returns the area under the peak of interest, max returns the apex of the peak and sum returns the sum of all intensities of the peak. See quantify for more details.

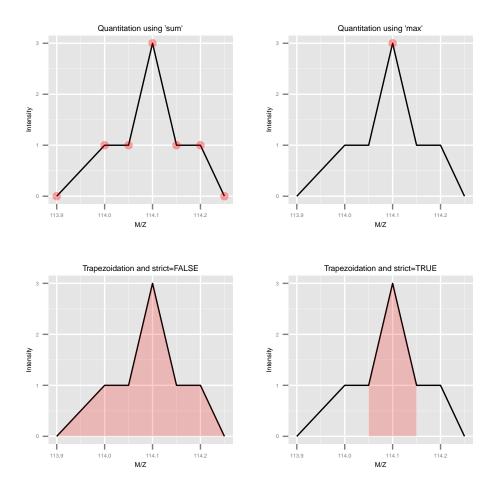


Figure 8: The different quantitation methods are illustrated above. Quantitation using sum sums all the data points in the peaks to produce, for this example, 7, whereas method max only uses the peak's maximum intensity, 3. Trapezoidation calculates the area under the peak taking the full with into account (using strict=FALSE gives 0.375) or only the width as defined by the reporter (using strict=TRUE gives 0.2).

The quantify method returns MSnSet objects, that extend the well-known eSet class defined in the Biobase package. MSnSet instances are very similar to ExpressionSet objects, except for the experiment meta-data that captures MIAPE specific information. The assay data is a matrix of dimensions $n \times m$, where m is the number of features/spectra originally in the MSnExp used as parameter in quantify and m is the number of reporter ions, that can be accessed with the exprs method. The meta data is directly inherited from the MSnExp instance.

```
> qnt <- quantify(experiment,</pre>
+
                  method = "trap",
                  reporters = iTRAQ4,
                  strict = FALSE,
                  parallel = FALSE,
                  verbose = FALSE)
> qnt
MSnSet (storageMode: lockedEnvironment)
assayData: 55 features, 4 samples
  element names: exprs
protocolData: none
phenoData
  sampleNames: iTRAQ4.114 iTRAQ4.115 iTRAQ4.116 iTRAQ4.117
  varLabels: mz reporters
  varMetadata: labelDescription
featureData
  featureNames: X1 X10 ... X9 (55 total)
  fvarLabels: spectrum ProteinAccession ... collision.energy
    (15 total)
  fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
Annotation: No annotation
-- - Processing information -- -
Data loaded: Wed May 11 18:54:39 2011
Curves <= 400 set to '0': Fri Apr 18 22:55:49 2014
Spectra cleaned: Fri Apr 18 22:55:51 2014
MZ trimmed [112..120]
iTRAQ4 quantification by trapezoidation: Fri Apr 18 22:55:56 2014
MSnbase version: 1.1.22
> head(exprs(qnt))
```

	iTRAQ4.114	iTRAQ4.115	iTRAQ4.116	iTRAQ4.117
X1	1348	2247.3	3927.7	7661.1
X10	740	799.4	712.6	940.7
X11	27638	33394.0	32104.3	26628.7
X12	31893	33634.7	37674.7	37227.7
X13	26144	29677.5	29089.1	27902.6
X14	6448	6234.2	6902.9	6437.2

If no peak is detected for a reporter ion peak, the respective quantitation value is set to NA. In our case, there is 1 such case in row 41. We will remove the offending line using the filterNA method. The pNA argument defines the percentage of accepted missing values per feature. As we do not expect any missing peaks, we set it to be 0 (which is also the detault value).

```
> table(is.na(qnt))

FALSE TRUE
  219   1

> qnt <- filterNA(qnt, pNA = 0)
> sum(is.na(qnt))

[1] 0
```

The filtering criteria for filterNA can also be defined as a pattern of columns that can have missing values and columns that must not exhibit any. See ?filterNA for details and examples.

The infrastructure around the MSnSet class allows flexible filtering using the [sub-setting operator. Below, we mimic the behaviour of filterNA(, pNA = 0) by calculating the row indices that should be removed, i.e. those that have at least on NA value and explicitly remove these row. This method allows one to devise and easily apply any filtering strategy.

```
> whichRow <- which(is.na((qnt)))%%nrow(qnt)
> qnt <- qnt[-whichRow, ]</pre>
```

See also the plotNA method to obtain a graphical overview of the completeness of a data set.

7.2 Importing quantitation data

If quantitation data is already available as a spreadsheet, it can be imported, along with additional optional feature and sample (pheno) meta data, with the readMSnSet function. This function takes the respective text-based spreadsheet (comma- or tab-separated) file names as argument to create a valid MSnSet instance.

Note that the quantitation data of MSnSet objects can also be exported to a text-based spreadsheet file using the write.exps method.

MSnbase also supports the mzTab format⁶, a light-weight, tab-delimited file format for proteomics data. mzTab files can be read into R with readMzTabData to create and MSnSet instance. MSnSet objects can also be exported to mzTab with the writeMzTabData function.

See the MSnbase-io vignette for a general overview of MSnbase's input/ouput capabilites.

7.3 Peak adjustments

Single peak adjustment In certain cases, peak intensities need to be adjusted as a result of peak interferance. For example, the +1 peak of the phenylalanine (F, Phe) immonium ion (with m/z 120.03) inteferes with the 121.1 TMT reporter ion. Below, we calculate the relative intensity of the +1 peaks compared to the main peak using the Rdispo package.

```
> library(Rdisop)
> ## Phenylalanine immonium ion
> Fim <- getMolecule("C8H10N")
> getMass(Fim)

[1] 120.1
> isotopes <- getIsotope(Fim)
> F1 <- isotopes[2, 2]
> F1

[1] 0.08573
```

If desired, one can thus specifically quantify the F immonium ion in the MS2 spectrum, estimate the intensity of the +1 ion (0.0857% of the F peak) and substract this calculated value from the 121.1 TMT reporter intensity.

⁶http://code.google.com/p/mztab/

The above principle can also be generalised for a set of overlapping peaks, as described below.

Reporter ions purity correction Impurities in the reporter reagents can also bias the results and can be corrected when manufacturers provide correction coefficients. These generally come as percentages of each reporter ion that have masses differing by -2, -1, +1 and +2 Da from the nominal reporter ion mass due to isotopic variants. The purityCorrect method applies such correction to MSnSet instances. It also requires a square matrix as second argument, impurities, that defines the relative percentage of reporter in the quantified each peak. See ?purityCorrect for more details.

```
> impurities <- matrix(c(0.929, 0.059, 0.002, 0.000,
                           0.020, 0.923, 0.056, 0.001,
+
                           0.000, 0.030, 0.924, 0.045,
                           0.000, 0.001, 0.040, 0.923),
                        nrow = 4)
> qnt.crct <- purityCorrect(qnt, impurities)</pre>
> head(exprs(qnt))
    iTRAQ4.114 iTRAQ4.115 iTRAQ4.116 iTRAQ4.117
X 1
                    2247.3
                                3927.7
          1348
                                            7661.1
X10
           740
                     799.4
                                 712.6
                                             940.7
X11
         27638
                   33394.0
                               32104.3
                                           26628.7
X12
         31893
                   33634.7
                               37674.7
                                           37227.7
X13
         26144
                   29677.5
                               29089.1
                                           27902.6
X14
          6448
                    6234.2
                                6902.9
                                            6437.2
> head(exprs(qnt.crct))
    iTRAQ4.114 iTRAQ4.115 iTRAQ4.116 iTRAQ4.117
Х1
        1402.9
                    2214.0
                                            8114.4
                                3762.3
X10
         779.5
                     793.1
                                 678.8
                                             985.2
X11
       29034.4
                   33271.0
                               31484.7
                                           27279.1
X12
       33618.9
                   33046.3
                               37031.6
                                           38492.1
X13
       27508.0
                   29440.9
                               28390.5
                                           28814.2
X14
        6809.8
                    6090.8
                                6799.5
                                            6636.1
```

The makeImpuritiesMatrix can be used to create impurity matrices. It opens a rudimentary spreadsheet that can be directly edited.

7.4 Normalisation

A MSnSet object is meant to be compatible with further downstream packages for data normalisation and statistical analysis. There is also a normalise (also available as normalize) method for expression sets. The method takes and instance of class MSnSet as first argument, and a character to describe the method to be used:

- quantiles Applies quantile normalisation (Bolstad et al., 2003) as implemented in the normalize.quantiles function of the preprocessCore package.
- quantiles.robust Applies robust quantile normalisation (Bolstad et al., 2003) as implemented in the normalize.quantiles.robust function of the preprocessCore package.
- vsn Applies variance stabilisation normalization (Huber et al., 2002) as implemented in the vsn2 function of the vsn package.
- max Each feature's reporter intensity is divided by the maximum of the reporter ions intensities.
- sum Each feature's reporter intensity is divided by the sum of the reporter ions intensities.

See ?normalise for more methods. A scale method for MSnSet instances, that relies on the base::scale function.

```
> qnt.max <- normalise(qnt, "max")
> qnt.sum <- normalise(qnt, "sum")
> qnt.quant <- normalise(qnt, "quantiles")
> qnt.qrob <- normalise(qnt, "quantiles.robust")
> qnt.vsn <- normalise(qnt, "vsn")</pre>
```

The effect of these are illustrated on figure 9 and figure 10 reproduces figure 3 of Karp et al. (2010) that described the application of vsn on iTRAQ reporter data.

Note that it is also possible to normalise individual spectra or whole MSnExp experiments with the normalise method using the max method. This will rescale all peaks between 0 and 1. To visualise the relative reporter peaks, one should this first trim the spectra using method trimMz as illustrated in section 6, then normalise the MSnExp with normalise using method="max" as illustrated above and plot the data using plot (figure 11).

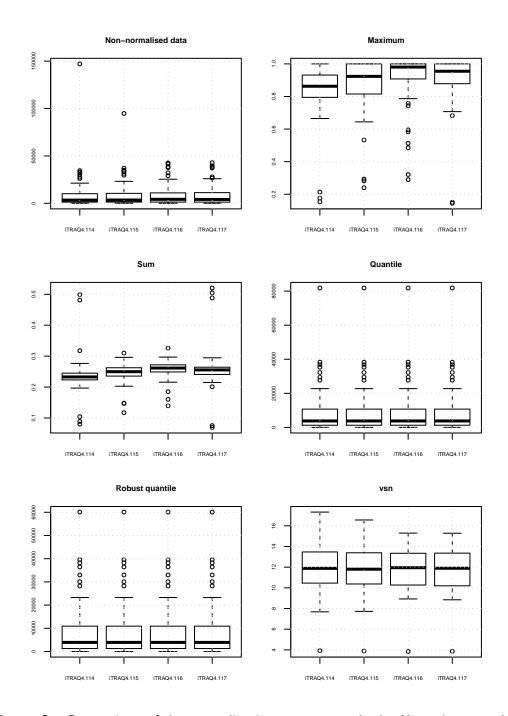


Figure 9: Comparison of the normalisation MSnSet methods. Note that vsn also glog-transforms the intensities.

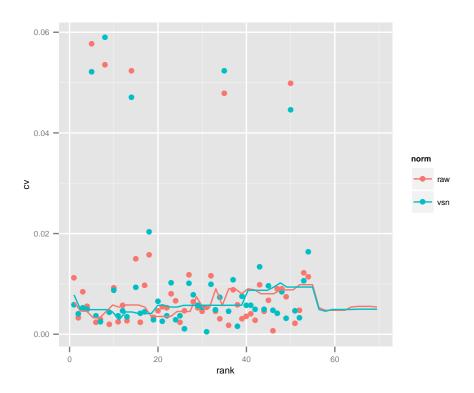


Figure 10: CV versus signal intensity comparison for log2 and vsn transformed data. Lines indicate running CV medians.

Additional dedicated normalisation method are available for MS² label-free quantitation, as described in section 9 and in the quantity documentation.

8 Feature aggregation

The above quantitation and normalisation has been performed on quantitative data obtained from individual spectra. However, the biological unit of interest is not the spectrum but the peptide or the protein. As such, it is important to be able to summarise features that belong to a same group, i.e. spectra from one peptide, peptides that originate from one protein, or directly combine all spectra that have been uniquely associated to one protein.

MSnbase provides one function, combineFeatures, that allows to aggregate features stored in an MSnSet using build-in or user defined summary function and return a new MSnSet instance. The three main arguments are described below. Additional details can be found in the method documentation.

combineFeatures's first argument, object, is an instance of class MSnSet, as has been created in the section 7.1 for instance. The second argument, groupBy, is a factor than has as many elements as there are features in the MSnSet object argument. The features corresponding to the groupBy levels

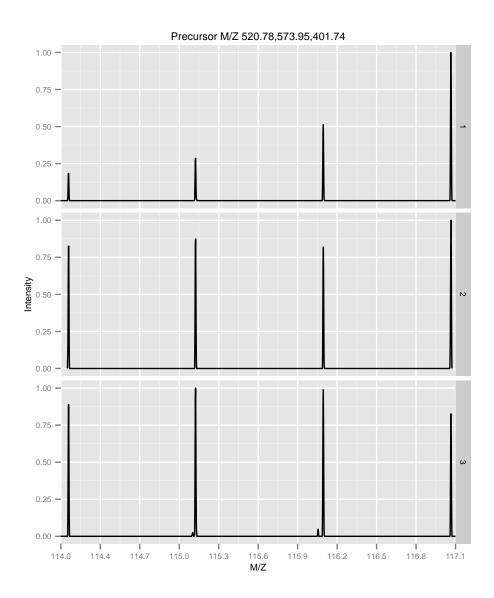


Figure 11: Experiment-wide normalised MS2 spectra. The y-axes of the individual spectra is now rescaled between 0 and 1 (highest peak), as opposed to figure 2.

will be aggregated so that the resulting MSnSet output will have length(levels(groupBy)) features. Here, we will combine individual MS2 spectra based on the protein they originate from. As shown below, this will result in 40 new aggregated features.

```
> gb <- fData(qnt)$ProteinAccession
> table(gb)
gb
    BSA ECA0172 ECA0435 ECA0452 ECA0469 ECA0621 ECA0631 ECA0691
               1
                                1
                                                 1
ECA0871 ECA0978 ECA1032 ECA1093 ECA1104 ECA1294 ECA1362 ECA1363
                       1
                                1
                                        1
                                                 1
ECA1364 ECA1422 ECA1443 ECA2186 ECA2391 ECA2421 ECA2831 ECA3082
                                        1
      1
               1
                       1
                                1
                                                 1
                                                         1
ECA3175 ECA3349 ECA3356 ECA3377 ECA3566 ECA3882 ECA3929 ECA3969
              2
                       1
                                1
                                        2
                                                 1
                                                         1
                                                                  1
ECA4013 ECA4026 ECA4030 ECA4037 ECA4512 ECA4513 ECA4514
                                                               ENO
                       1
                               1
                                        1
                                                                  3
                                                1
> length(unique(gb))
[1] 40
```

The third argument, fun, defined how to combine the features. Predefined functions are readily available and can be specified as strings (fun="mean", fun="median", fun="sum", fun="weighted.mean" or fun="medianpolish" to compute respectively the mean, media, sum, weighted mean or median polish of the features to be aggregated). Alternatively, is is possible to supply user defined functions with fun=function(x) { . . . }. We will use the median here.

```
> qnt2 <- combineFeatures(qnt, groupBy = gb, fun = "median")

Combined 54 features into 40 using median
> qnt2

MSnSet (storageMode: lockedEnvironment)
assayData: 40 features, 4 samples
element names: exprs
protocolData: none
```

```
phenoData
  sampleNames: iTRAQ4.114 iTRAQ4.115 iTRAQ4.116 iTRAQ4.117
 varLabels: mz reporters
 varMetadata: labelDescription
featureData
  featureNames: BSA ECA0172 ... ENO (40 total)
 fvarLabels: spectrum ProteinAccession ... CV.iTRAQ4.117
    (19 total)
 fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
Annotation: No annotation
--- Processing information ---
Data loaded: Wed May 11 18:54:39 2011
Curves <= 400 set to '0': Fri Apr 18 22:55:49 2014
Spectra cleaned: Fri Apr 18 22:55:51 2014
MZ trimmed [112..120]
iTRAQ4 quantification by trapezoidation: Fri Apr 18 22:55:56 2014
Subset [55,4][54,4] Fri Apr 18 22:55:56 2014
Removed features with more than 0 NAs: Fri Apr 18 22:55:56 2014
Dropped featureData's levels Fri Apr 18 22:55:56 2014
Combined 54 features into 40 using median: Fri Apr 18 22:55:58 2014
MSnbase version: 1.1.22
```

9 Label-free MS² quantitation

9.1 Peptide counting

Note that if samples are not multiplexed, label-free MS² quantitation by spectral counting is possible using MSnbase. Once individual spectra have been assigned to peptides and proteins (see section 4), it becomes straightforward to estimate protein quantities using the simple peptide counting method, as illustrated in section 8.

```
> sc <- quantify(msexp, method = "count")
> ## lets modify out data for demonstration purposes
> fData(sc)$accession[1] <- fData(sc)$accession[2]
> fData(sc)$accession
[1] "ECA1028" "ECA1028" "ECA0510"
```

```
> sc <- combineFeatures(sc, groupBy = fData(sc)$accession, fun = "sum")

Combined 3 features into 2 using sum
> exprs(sc)

1
ECA0510 1
ECA1028 2
```

Such count data could then be further analyses using dedicated count methods (originally developed for high-throughput sequencing) and directly available for MSnSet instances in the msmsTests Bioconductor package.

9.2 Spectral counting and intensity methods

The spectral abundance factor (SAF) and the normalised form (NSAF) (Paoletti et al., 2006) as well as the spectral index (SI) and other normalised variations (SI_{GI} and SI_N) (Griffin et al., 2010) are also available. Below, we illustrate how to apply the normalised SI_N to the experiment containing identification data produced in section 4.

The spectra that did not match any peptide have already been remove with the removeNoId method. As can be seen in the following code chunk, the first spectrum could not be matched to any single protein. Non-identified spectra and those matching multiple proteins are removed automatically prior to any label-free quantitation. Once can also remove peptide that do not match uniquely to proteins (as defined by the npsm feature variable column) with the removeMultipleAssignment method.

Note that the label-free methods implicitely apply feature aggregation (section 8) and normalise (section 7.4) the quantitation values based on the total sample intensity and or the protein lengths (see Paoletti et al. (2006) and Griffin et al. (2010) for details).

Let's now proceed with the quantitation using the quantify, as in section 7.1, this time however specifying the method of interest, "SIn" (the reporters

argument can of course be ignored here). The required peptide-protein mapping and protein lengths are extracted automatically from the feature metadata using the default accession and length feature variables.

```
> siquant <- quantify(msexp, method = "SIn")

Combined 2 features into 2 using sum
> processingData(siquant)
- - - Processing information - - -
Data loaded: Fri Apr 18 22:55:48 2014
Filtered 2 unidentified peptides out: Fri Apr 18 22:55:48 2014
Removed 1 features assigned to multiple proteins: Fri Apr 18 22:55:58 2014
Combined 2 features into 2 using sum: Fri Apr 18 22:55:58 2014
Quantification by SIn: Fri Apr 18 22:55:58 2014
MSnbase version: 1.12.1
> exprs(siquant)

1
ECA0510 0.003589
ECA1028 0.001470
```

Other label-free methods can be applied by specifiying the appropriate method argument. See ?quantify for more details.

10 Quantitative assessment of incomplete dissociation

Quantitation using isobaric reporter tags assumes complete dissociation between the reporter group (red on figure 12), balance group (blue) and peptide (the peptide reactive group is drawn in green). However, incomplete dissociation does occur and results in an isobaric tag (i.e reporter and balance groups) specific peaks.

MSnbase provides, among others, a ReporterIons object for iTRAQ 4-plex that includes the 145 peaks, called iTRAQ5. This can then be used to quantify the experiment as show in section 7.1 to estimate incomplete dissociation for each spectrum.

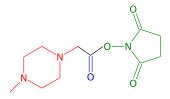


Figure 12: iTRAQ 4-plex isobaric tags reagent consist of three parts: (1) a charged reporter group (MZ of 114, 115, 116 and 117) that is unique to each of the four reagents (red), (2) an uncharged mass balance group (28-31 Da) (blue) and (3) a peptide reactive group (NHS ester) that binds to the peptide. In case of incomplete dissociation, the reporter and balance groups produce a specific peaks at MZ 145.

```
> iTRAQ5
Object of class "ReporterIons"
iTRAQ4: '4-plex iTRAQ and reporter + balance group' with 5 reporter ions
-114.1 +/-0.05 (red)
-115.1 +/-0.05 (green)
 - 116.1 +/- 0.05 (blue)
 -117.1 +/-0.05 (yellow)
 - 145.1 +/- 0.05 (grey)
> incompdiss <- quantify(itraqdata,</pre>
                          method = "trap",
+
                          reporters = iTRAQ5,
                          strict = FALSE,
                          parallel = FALSE,
                          verbose = FALSE)
> head(exprs(incompdiss))
    iTRAQ5.114 iTRAQ5.115 iTRAQ5.116 iTRAQ5.117 iTRAQ5.145
Х1
          1348
                    2247.3
                                           7661.1
                               3927.7
                                                      2063.9
X10
           740
                     799.4
                                712.6
                                            940.7
                                                       467.4
X11
         27638
                  33394.0
                              32104.3
                                          26628.7
                                                     13543.5
X12
                              37674.7
                                          37227.7
         31893
                   33634.7
                                                     11839.3
X13
         26144
                   29677.5
                              29089.1
                                          27902.6
                                                     12206.6
X14
                    6234.2
          6448
                               6902.9
                                           6437.2
                                                       427.7
```

Figure 13 compares these intensities for the whole experiment.

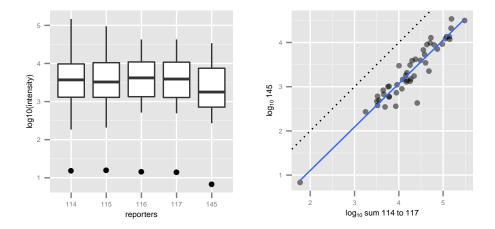


Figure 13: Boxplot and scatterplot comparing intensities of the 4 reporter ions (or their sum, on the right) and the incomplete dissociation specific peak.

11 Combining MSnSet instances

Combining mass spectrometry runs can be done in two different ways depending on the nature of these runs. If the runs represent repeated measures of identical samples, for instance multiple fractions, the data has to be combine along the row of the quantitation matrix: all the features (along the rows) represent measurements of the same set of samples (along the columns). In this situation, described in section 11.1, two experiments of dimensions n_1 (rows) by m (columns and n_2 by m will produce a new experiment of dimensions $n_1 + n_2$ by m.

When however, different sets of samples have been analysed in different mass spectrometry runs, the data has to be combined along the columns of the quantitation matrix: some features will be shared across experiments and should thus be aligned on a same row in the new data set, whereas unique features to one experiment should be set as missing in the other one. In this situation, described in section 11.2, two experiments of dimensions n_1 by m_1 and n_2 by m_2 will produce a new experiment of dimensions $unique_{n_1} + unique_{n_2} + shared_{n_1,n_2}$ by $m_1 + m_2$. The two first terms of the first dimension will be complemented by NA values.

Default MSnSet feature names (X1, X2, ...) and sample names (iTRAQ4.114, iTRAQ4.115, iTRAQ4.116, ...) are not informative. The features and samples of these anonymous quantitative data-sets should be updated before being combined, to guide how to meaningfully merge them.

11.1 Combining identical samples

To simulate this situation, let us use quantiation data from the itraqdata object that is provided with the package as experiment 1 and the data from the rawdata MSnExp instance created at the very beginning of this document. Both experiments share the *same* default iTRAQ 4-plex reporter names as default sample names, and will thus automatically be combined along rows.

It important to note that the features of these independent experiments share the same default anonymous names: X1, X2, X3, ..., that however represent quantitation of distinct physical analytes. If the experiments were to be combined as is, it would result in an error because data points for the same feature name (say X1) and the same sample name (say itraquation) have different values. We thus first update the feature names to explicitate that they originate from different experiment and represent quantitation from different spectra using the convenience function updateFeatureNames. Note that updating the names of one experiment would suffice here.

```
> head(featureNames(exp1))
[1] "X1" "X10" "X11" "X12" "X13" "X14"

> exp1 <- updateFeatureNames(exp1)
> head(featureNames(exp1))

[1] "X1.exp1" "X10.exp1" "X11.exp1" "X12.exp1" "X13.exp1"
[6] "X14.exp1"

> head(featureNames(exp2))

[1] "X1.1" "X2.1" "X3.1" "X4.1" "X5.1"
```

```
> exp2 <- updateFeatureNames(exp2)
> head(featureNames(exp2))

[1] "X1.1.exp2" "X2.1.exp2" "X3.1.exp2" "X4.1.exp2" "X5.1.exp2"
```

The two experiments now share the same sample names and have different feature names and will be combined along the row. Note that all meta-data is correctly combined along the quantitation values.

```
> exp12 <- combine(exp1, exp2)
Warning:
unknown or conflicting information in MIAPE field 'email'; using information
from first object 'x'
> dim(exp1)
[1] 55 4
> dim(exp2)
[1] 5 4
> dim(exp2)
[1] 60 4
```

11.2 Combine different samples

Lets now create two MSnSets from the same raw data to simulate two different independent experiments that share some features. As done previously (see section 8), we combine the spectra based on the proteins they have been identified to belong to. Features can thus naturally be named using protein accession numbers. Alternatively, if peptide sequences would have been used as grouping factor in combineFeatures, then these would be good feature name candidates.

```
> set.seed(1)
> i <- sample(length(itraqdata), 35)
> j <- sample(length(itraqdata), 35)
> exp1 <- quantify(itraqdata[i], reporters = iTRAQ4,</pre>
```

```
parallel = FALSE, verbose = FALSE)
> exp2 <- quantify(itraqdata[j], reporters = iTRAQ4,
                   parallel = FALSE, verbose = FALSE)
> exp1 <- droplevels(exp1)</pre>
> exp2 <- droplevels(exp2)</pre>
> table(featureNames(exp1) %in% featureNames(exp2))
FALSE
     TRUE
   12
         23
> exp1 <- combineFeatures(exp1,</pre>
                           groupBy = fData(exp1)$ProteinAccession)
Combined 35 features into 27 using mean
> exp2 <- combineFeatures(exp2,
                           groupBy = fData(exp2)$ProteinAccession)
Combined 35 features into 27 using mean
> head(featureNames(exp1))
[1] "BSA"
              "ECA0435" "ECA0469" "ECA0621" "ECA0631" "ECA0978"
> head(featureNames(exp2))
              "ECA0172" "ECA0435" "ECA0452" "ECA0469" "ECA0621"
[1] "BSA"
```

The droplevels drops the unused featureData levels. This is required to avoid passing absent levels as groupBy in combineFeatures. Alternatively, one could also use factor(fData(exp1)\$ProteinAccession) as groupBy argument.

The feature names are updated automatically by combineFeatures, using the groupBy argument. Proper feature names, reflecting the nature of the features (spectra, peptides or proteins) is critical when multiple experiments are to be combined, as this is done using common features as defined by their names (see below).

Sample names should also be updated to replace anonymous reporter names with relevant identifiers; the individual reporter data is stored in the phenoData and is not lost. A convenience function updateSampleNames is provided to append the MSnSet's variable name to the already defined names, although in

general, biologically relevant identifiers are preferred.

```
> sampleNames(exp1)

[1] "iTRAQ4.114" "iTRAQ4.115" "iTRAQ4.116" "iTRAQ4.117"

> exp1 <- updateSampleNames(exp1)

> sampleNames(exp1)

[1] "iTRAQ4.114.exp1" "iTRAQ4.115.exp1" "iTRAQ4.116.exp1"

[4] "iTRAQ4.117.exp1"

> sampleNames(exp1) <- c("Ctrl1", "Cond1", "Ctrl2", "Cond2")
> sampleNames(exp2) <- c("Ctrl3", "Cond3", "Ctrl4", "Cond4")</pre>
```

At this stage, it is not yet possible to combine the two experiments, because their feature data is not compatible yet; they share the same feature variable labels, i.e. the feature data column names (spectrum, ProteinAccession, ProteinDescription, ...), but the part of the content is different because the original data was (in particular all the spectrum centric data: identical peptides in different runs will have different retention times, precursor intensities, ...). Feature data with identical labels (columns in the data frame) and names (row in the data frame) are expected to have the same data and produce an error if not conform.

Instead of removing these identical feature data columns, one can use a second convenience function, updateFvarLabels, to update feature labels based on the experiements variable name and maintain all the metadata.

It is now possible to combine exp1 and exp2, including all the meta-data, with the combine method. The new experiment will contain the union of the feature names of the individual experiments with missing values inserted appropriately.

```
> exp12 <- combine(exp1, exp2)</pre>
> dim(exp12)
[1] 35 8
> pData(exp12)
         mz reporters
Ctrl1 114.1
               iTRAQ4
Cond1 115.1
               iTRAQ4
Ctrl2 116.1
               iTRAQ4
Cond2 117.1
               iTRAQ4
Ctrl3 114.1
               iTRAQ4
Cond3 115.1
               iTRAQ4
Ctrl4 116.1
               iTRAQ4
Cond4 117.1
               iTRAQ4
> exprs(exp12)[25:28, ]
        Ctrl1 Cond1 Ctrl2 Cond2 Ctrl3 Cond3 Ctrl4 Cond4
ECA4513 10155 10487 11018 11290
                                   NA
                                          NA
                                                NA
ECA4514 20396 20833 23281 23694 15966 16207 18456 18704
ENO
        50826 31978
                       NA 7529 39966 24967
                                                   5926
ECA0172 NA NA NA
                             NA 17594 18546 19362 18328
```

```
> exp12
MSnSet (storageMode: lockedEnvironment)
assayData: 35 features, 8 samples
  element names: exprs
protocolData: none
phenoData
  sampleNames: Ctrl1 Cond1 ... Cond4 (8 total)
  varLabels: mz reporters
  varMetadata: labelDescription
featureData
  featureNames: BSA ECA0435 ... ECA4512 (35 total)
 fvarLabels: spectrum.exp1 ProteinAccession.exp1 ...
    CV.iTRAQ4.117.exp2 (38 total)
  fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
Annotation: No annotation
--- Processing information ---
Combined [35,8] and [27,4] MSnSets Fri Apr 18 22:56:12 2014
MSnbase version: 1.1.22
```

In summary, when experiments with different samples need to be combined (along the columns), one needs to (1) clarify the sample names using updateSampleNames or better manually, for biological relevance and (2) update the feature data variable labels with updateFvarLabels. The individual experiments (there can be more than 2) can then easily be combined with the combine method while retaining the meta-data.

If runs for the same sample (different fractions for example) need to be combines, one needs to (1) differentiate the feature provenance with updateFeatureNames prior to use combine.

12 MS^E data processing

MSnbase can also be used for MS^E data independent acquisition from Waters instrument. The MS^E pipeline depends on the Bioconductor synapter package (Bond et al., 2013) that produces MSnSet instances for indvidual acquisitions. The MSnbase infrastructure can subsequently be used to further combine experiments, as shown in section 11.2 and apply top3 quantitation using the topN method.

13 Session information

- R version 3.1.0 (2014-04-10), x86_64-unknown-linux-gnu
- Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C,
 LC_TIME=en_US.UTF-8, LC_COLLATE=C, LC_MONETARY=en_US.UTF-8,
 LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C,
 LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
 LC_IDENTIFICATION=C
- Base packages: base, datasets, grDevices, graphics, grid, methods, parallel, stats, utils
- Other packages: Biobase 2.24.0, BiocGenerics 0.10.0, MSnbase 1.12.1, Rcpp 0.11.1, RcppClassic 0.9.5, Rdisop 1.24.0, codetools 0.2-8, doMC 1.3.3, foreach 1.4.2, ggplot2 0.9.3.1, iterators 1.0.7, knitr 1.5, mzR 1.10.0, reshape2 1.2.2, zoo 1.7-11
- Loaded via a namespace (and not attached): BiocInstaller 1.14.1, IRanges 1.22.3, MASS 7.3-31, RColorBrewer 1.0-5, XML 3.98-1.1, affy 1.42.0, affyio 1.32.0, colorspace 1.2-4, dichromat 2.0-0, digest 0.6.4, doParallel 1.0.8, evaluate 0.5.3, formatR 0.10, gtable 0.1.2, highr 0.3, impute 1.38.0, labeling 0.2, lattice 0.20-29, limma 3.20.1, munsell 0.4.2, mzID 1.2.0, pcaMethods 1.54.0, plyr 1.8.1, preprocessCore 1.26.0, proto 0.3-10, scales 0.2.3, stats4 3.1.0, stringr 0.6.2, tools 3.1.0, vsn 3.32.0, zlibbioc 1.10.0

References

B M Bolstad, R A Irizarry, M Astrand, and T P Speed. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. *Bioinformatics*, 19(2):185–93, 2003.

Nicholas James Bond, Pavel Vyacheslavovich Shliaha, Kathryn S. Lilley, and Laurent Gatto. Improving qualitative and quantitative performance for ms^e-based label free proteomics. *Journal of Proteome Research*, in press, 2013. doi: 10.1021/pr300776t. URL http://pubs.acs.org/doi/abs/10.1021/pr300776t.

Joseph M Foster, Sven Degroeve, Laurent Gatto, Matthieu Visser, Rui Wang, Johannes Griss, Rolf Apweiler, and Lennart Martens. A posteriori quality

- control for the curation and reuse of public proteomics data. *Proteomics*, 11 (11):2182–94, 2011. doi: 10.1002/pmic.201000602.
- Laurent Gatto and Kathryn S Lilley. MSnbase an R/Bioconductor package for isobaric tagged mass spectrometry data visualization, processing and quantitation. *Bioinformatics*, 28(2):288–9, Jan 2012. doi: 10.1093/bioinformatics/btr645.
- Robert C. Gentleman, Vincent J. Carey, Douglas M. Bates, Ben Bolstad, Marcel Dettling, Sandrine Dudoit, Byron Ellis, Laurent Gautier, Yongchao Ge, Jeff Gentry, Kurt Hornik, Torsten Hothorn, Wolfgang Huber, Stefano Iacus, Rafael Irizarry, Friedrich Leisch, Cheng Li, Martin Maechler, Anthony J. Rossini, Gunther Sawitzki, Colin Smith, Gordon Smyth, Luke Tierney, Jean Y. H. Yang, and Jianhua Zhang. Bioconductor: open software development for computational biology and bioinformatics. *Genome Biol*, 5(10): -80, 2004. doi: 10.1186/gb-2004-5-10-r80. URL http://dx.doi.org/10.1186/gb-2004-5-10-r80.
- N M Griffin, J Yu, F Long, P Oh, S Shore, Y Li, J A Koziol, and J E Schnitzer. Label-free, normalized quantification of complex mass spectrometry data for proteomic analysis. *Nat Biotechnol*, 28(1):83–9, Jan 2010. doi: 10.1038/nbt. 1592.
- Wolfgang Huber, Anja von Heydebreck, Holger Sueltmann, Annemarie Poustka, and Martin Vingron. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. *Bioinformatics*, 18 Suppl. 1:S96–S104, 2002.
- Andrew R. Jones, Martin Eisenacher, Gerhard Mayer, Oliver Kohlbacher, Jennifer Siepen, Simon J. Hubbard, Julian N. Selley, Brian C. Searle, James Shofstahl, Sean L. Seymour, Randall Julian, Pierre-Alain Binz, Eric W. Deutsch, Henning Hermjakob, Florian Reisinger, Johannes Griss, Juan Antonio Vizcano, Matthew Chambers, Angel Pizarro, and David Creasy. The mzIdentML data standard for mass spectrometry-based proteomics results. *Molecular & Cellular Proteomics*, 11(7), 2012. doi: 10.1074/mcp.M111.014381. URL http://www.mcponline.org/content/11/7/M111.014381.abstract.
- Natasha A Karp, Wolfgang Huber, Pawel G Sadowski, Philip D Charles, Svenja V Hester, and Kathryn S Lilley. Addressing accuracy and precision issues in itraq quantitation. *Mol. Cell Proteomics*, 9(9):1885–97, 2010. doi: 10.1074/mcp.M900628-MCP200.

- Lennart Martens, Matthew Chambers, Marc Sturm, Darren Kes sner, Fredrik Levander, Jim Shofstahl, Wilfred H Tang, Andreas Ro mpp, Steffen Neumann, Angel D Pizarro, Lu isa Montecchi-Palazzi, Natalie Tasman, Mike Coleman, Florian Reisinger, Pune et Souda, Henning Hermjakob, Pierre-Alain Binz, and Eric W Deutsch. mzml a community standard for mass spectrometry data. *Molecular & Cellular Proteomics : MCP*, 2010. doi: 10.1074/mcp.R110.000133.
- Sandra Orchard, Luisa Montechi-Palazzi, Eric W Deutsch, Pierre-Alain Binz, Andrew R Jones, Norman Paton, Angel Pizarro, David M Creasy, Jérôme Wojcik, and Henning Hermjakob. Five years of progress in the standardization of proteomics data 4th annual spring workshop of the hupo-proteomics standards initiative april 23-25, 2007 ecole nationale supérieure (ens), lyon, france. *Proteomics*, 7(19):3436–40, 2007. doi: 10.1002/pmic.200700658.
- A C Paoletti, T J Parmely, C Tomomori-Sato, S Sato, D Zhu, R C Conaway, J W Conaway, L Florens, and M P Washburn. Quantitative proteomic analysis of distinct mammalian mediator complexes using normalized spectral abundance factors. *Proc Natl Acad Sci U S A*, 103(50):18928–33, Dec 2006. doi: 10.1073/pnas.0606379103.
- Patrick G A Pedrioli, Jimmy K Eng, Robert Hubley, Mathijs Vogelzang, Eric W Deutsch, Brian Raught, Brian Pratt, Erik Nilsson, Ruth H Angeletti, Rolf Apweiler, Kei Cheung, Catherine E Costello, Henning Hermjakob, Sequin Huang, Randall K Julian, Eugene Kapp, Mark E McComb, Stephen G Oliver, Gilbert Omenn, Norman W Paton, Richard Simpson, Richard Smith, Chris F Taylor, Weimin Zhu, and Ruedi Aebersold. A common open representation of mass spectrometry data and its application to proteomics research. *Nat. Biotechnol.*, 22(11):1459–66, 2004. doi: 10.1038/nbt1031.
- R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2011. URL http://www.R-project.org/. ISBN 3-900051-07-0.
- Chris F. Taylor, Norman W. Paton, Kathryn S. Lilley, Pierre-Alain Binz, Randall K. Julian, Andrew R. Jones, Weimin Zhu, Rolf Apweiler, Ruedi Aebersold, Eric W. Deutsch, Michael J. Dunn, Albert J. R. Heck, Alexander Leitner, Marcus Macht, Matthias Mann, Lennart Martens, Thomas A. Neubert, Scott D. Patterson, Peipei Ping, Sean L. Seymour, Puneet Souda, Akira Tsugita, Joel Vandekerckhove, Thomas M. Vondriska, Julian P. Whitelegge, Marc R. Wilkins, Ioannnis Xenarios, John R. Yates, and Henning Hermjakob. The minimum information about a proteomics experiment (miape).

Nat Biotechnol, 25(8):887–893, Aug 2007. doi: 10.1038/nbt1329. URL http://dx.doi.org/10.1038/nbt1329.

Chris F Taylor, Pierre-Alain Binz, Ruedi Aebersold, Michel Affolter, Robert Barkovich, Eric W Deutsch, David M Horn, Andreas Hhmer, Martin Kussmann, Kathryn Lilley, Marcus Macht, Matthias Mann, Dieter Mller, Thomas A Neubert, Janice Nickson, Scott D Patterson, Roberto Raso, Kathryn Resing, Sean L Seymour, Akira Tsugita, Ioannis Xenarios, Rong Zeng, and Randall K Julian. Guidelines for reporting the use of mass spectrometry in proteomics. *Nat. Biotechnol.*, 26(8):860–1, 2008. doi: 10.1038/nbt0808-860.

Hadley Wickham. ggplot2: elegant graphics for data analysis. Springer New York, 2009. ISBN 978-0-387-98140-6. URL http://had.co.nz/ggplot2/book.