
An Introduction to Rsamtools

Martin Morgan

Modified: 18 March, 2010. Compiled: November 9, 2012

> library(Rsamtools)

1 Introduction

The Rsamtools package provides an interface to BAM files. BAM files are produced
by samtools and other software, and represent a flexible format for storing ‘short’
reads aligned to reference genomes. BAM files typically contain sequence and
base qualities, and alignment coordinates and quality measures. BAM files are
appealing for several reasons. The format is flexible enough to represent reads
generated and aligned using diverse technologies. The files are binary so that
file access is relatively efficient. BAM files can be indexed, allowing ready access
to localized chromosomal regions. BAM files can be accessed remotely, provided
the remote hosting site supports such access and a local index is available. This
means that specific regions of remote files can be accessed without retrieving the
entire (large!) file. A full description is available in the BAM format specification
(http://samtools.sourceforge.net/SAM1.pdf)

The main purpose of the Rsamtools package is to import BAM files into R.
Rsamtools also provides some facility for file access such as record counting,
index file creation, and filtering to create new files containing subsets of the
original. An important use case for Rsamtools is as a starting point for creat-
ing R objects suitable for a diversity of work flows, e.g., AlignedRead objects
in the ShortRead package (for quality assessment and read manipulation), or
GappedAlignments objects in GenomicRanges package (for RNA-seq and other
applications). Those desiring more functionality are encouraged to explore sam-
tools and related software efforts.

2 Input

The essential capability provided by Rsamtools is BAM input. This is accom-
plished with the scanBam function. scanBam takes as input the name of the BAM

file to be parsed. In addition, the param argument determines which genomic
coordinates of the BAM file, and what components of each record, will be input.
param is an instance of the ScanBamParam class. To create a param object, call
ScanBamParam. Here we create a param object to extract reads aligned to three

1

http://samtools.sourceforge.net/SAM1.pdf

distinct ranges (one on seq1, two on seq2). From each of read in those ranges,
we specify that we would like to extract the reference name (rname, e.g., seq1),
strand, alignment position, query (i.e., read) width, and query sequence:

> which <- RangesList(seq1=IRanges(1000, 2000),

+ seq2=IRanges(c(100, 1000), c(1000, 2000)))

> what <- c("rname", "strand", "pos", "qwidth", "seq")

> param <- ScanBamParam(which=which, what=what)

Additional information can be found on the help page for ScanBamParam. Read-
ing the relevant records from the BAM file is accomplished with

> bamFile <-

+ system.file("extdata", "ex1.bam", package="Rsamtools")

> bam <- scanBam(bamFile, param=param)

Like scan, scanBam returns a list of values. Each element of the list corre-
sponds to a range specified by the which argument to ScanBamParam.

> class(bam)

[1] "list"

> names(bam)

[1] "seq1:1000-2000" "seq2:100-1000" "seq2:1000-2000"

Each element is itself a list, containing the elements specified by the what and
tag arguments to ScanBamParam.

> class(bam[[1]])

[1] "list"

> names(bam[[1]])

[1] "rname" "strand" "pos" "qwidth" "seq"

The elements are either basic R or IRanges data types

> sapply(bam[[1]], class)

rname strand pos qwidth

"factor" "factor" "integer" "integer"

seq

"DNAStringSet"

A paradigm for collapsing the list-of-lists into a single list is

2

> .unlist <- function (x)

+ {

+ ## do.call(c, ...) coerces factor to integer, which is undesired

+ x1 <- x[[1L]]

+ if (is.factor(x1)) {

+ structure(unlist(x), class = "factor", levels = levels(x1))

+ } else {

+ do.call(c, x)

+ }

+ }

> bam <- unname(bam) # names not useful in unlisted result

> elts <- setNames(bamWhat(param), bamWhat(param))

> lst <- lapply(elts, function(elt) .unlist(lapply(bam, "[[", elt)))

This might be further transformed, e.g., to a DataFrame, with

> head(do.call("DataFrame", lst))

DataFrame with 6 rows and 5 columns

rname strand pos qwidth

<factor> <factor> <integer> <integer>

1 seq1 + 970 35

2 seq1 + 971 35

3 seq1 + 972 35

4 seq1 + 973 35

5 seq1 + 974 35

6 seq1 - 975 35

seq

<DNAStringSet>

1 TATTAGGAAATGCTTTACTGTCATAACTATGAAGA

2 ATTAGGAAATGCTTTACTGTCATAACTATGAAGAG

3 TTAGGAAATGCTTTACTGTCATAACTATGAAGAGA

4 TAGGAAATGCTTTACTGTCATAACTATGAAGAGAC

5 AGGAAATGCTTTACTGTCATAACTATGAAGAGACT

6 GGAAATGCTTTACTGTCATAACTATGAAGAGACTA

Often, an alternative is to use a ScanBamParam object with desired fields spec-
ified in what as an argument to GenomicRanges::readGappedAlignments; the
specified fields are added as columns to the returned GappedAlignments.

The BAM file in the previous example includes an index, represented by a
separate file with extension .bai:

> list.files(dirname(bamFile), pattern="ex1.bam(.bai)?")

[1] "ex1.bam" "ex1.bam.bai"

Indexing provides two significant benefits. First, an index allows a BAM file to
be efficiently accessed by range. A corollary is that providing a which argu-
ment to ScanBamParam requires an index. Second, coordinates for extracting

3

information from a BAM file can be derived from the index, so a portion of a
remote BAM file can be retrieved with local access only to the index. For in-
stance, provided an index file exists on the local computer, it is possible to
retrieve a small portion of a BAM file residing on the 1000 genomes HTTP
server. The url ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/pilot_

data/data/NA19240/alignment/NA19240.chrom6.SLX.maq.SRP000032.2009_

07.bam points to the BAM file corresponding to individual NA19240 chromo-
some 6 Solexa (Illumina) sequences aligned using MAQ. The remote file is very
large (about 10 GB), but the corresponding index file is small (about 500 KB).
With na19240url set to the above address, the following retrieves just those
reads in the specified range

> which <- RangesList("6"=IRanges(100000L, 110000L))

> param <- ScanBamParam(which=which, what=scanBamWhat())

> na19240bam <- scanBam(na19240url, param=param)

Invoking scanBam without an index file, as above, first retrieves the index file
from the remote location, and then queries the remote file using the index;
for repeated queries, it is more efficient to retrieve the index file first (e.g., with
download.file) and then use the local index as an argument to scanBam. Many
BAM files were created in a way that causes scanBam to report that the “EOF
marker is absent”; this message can safely be ignored.

BAM files may be read by functions in packages other than Rsamtools. In
ShortRead , readAligned invoked with type="bam" will read BAM files in to an
AlignedRead object. This function takes a param argument, just as scanBam, so
the user can control which portions of the file are input. Similar input facilities
are available through the readGappedAlignment function in GenomicRanges.

Additional ways of interacting with BAM files include scanBamHeader (to
extract header information) and countBam (to count records matching param).
filterBam filters reads from the source file according to the criteria of the
ScanBamParam parameter, writing reads passing the filter to a new file. The
function sortBam sorts a previously unsorted BAM, while The function indexBam

creates an index file from a sorted BAM file.
readPileup reads a pileup file created by samtools, importing SNP, indel,

or all variants into a GRanges object.

2.1 Large bam files

BAM files can be large, containing more information on more genomic regions than
are of immediate interest or than can fit in memory. The first strategy for dealing
with this is to select, using the what and which arguments to ScanBamParam,
just those portions of the BAM file that are essential to the current analysis,
e.g., specifying what=c(‘rname’, ’qname’, ’pos’) when wishing to calculate
coverage of ungapped reads.

When selective input of BAM files is still too memory-intensive, the file can
be processed in chunks, with each chunk distilled to the derived information of
interest. Chromosomes will often be the natural chunk to process. For instance,

4

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/pilot_data/data/NA19240/alignment/NA19240.chrom6.SLX.maq.SRP000032.2009_07.bam
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/pilot_data/data/NA19240/alignment/NA19240.chrom6.SLX.maq.SRP000032.2009_07.bam
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/pilot_data/data/NA19240/alignment/NA19240.chrom6.SLX.maq.SRP000032.2009_07.bam

here we write a summary function that takes a single sequence name (chromo-
some) as input, reads in specific information from the BAM file, and calculates
coverage over that sequence.

> summaryFunction <-

+ function(seqname, bamFile, ...)

+ {

+ param <- ScanBamParam(what=c('pos', 'qwidth'),
+ which=GRanges(seqname, IRanges(1, 1e7)),

+ flag=scanBamFlag(isUnmappedQuery=FALSE))

+ x <- scanBam(bamFile, ..., param=param)[[1]]

+ coverage(IRanges(x[["pos"]], width=x[["qwidth"]]))

+ }

This might be used as follows; it is an ideal candidate for evaluation in parallel,
e.g., using the multicore package and srapply function in ShortRead .

> seqnames <- paste("seq", 1:2, sep="")

> cvg <- lapply(seqnames, summaryFunction, bamFile)

> names(cvg) <- seqnames

> cvg

$seq1

integer-Rle of length 1569 with 1054 runs

Lengths: 2 2 1 3 4 2 3 4 ... 1 1 1 1 1 1 1

Values : 1 2 3 4 5 7 8 9 ... 9 7 6 5 3 2 1

$seq2

integer-Rle of length 1567 with 1092 runs

Lengths: 1 3 1 1 1 3 1 4 ... 1 1 2 1 4 4 1

Values : 3 4 5 8 12 14 15 16 ... 10 8 7 6 3 2 1

The result of the function (a coverage vector, in this case) will often be much
smaller than the input.

3 Views

The functions described in the previous section import data in to R. However,
sequence data can be very large, and it does not always make sense to read the
data in immediately. Instead, it can be useful to marshal references to the data
into a container and then act on components of the container. The BamViews
class provides a mechanism for creating ‘views’ into a set of BAM files. The view
itself is light-weight, containing references to the relevant BAM files and metadata
about the view (e.g., the phenotypic samples corresponding to each BAM file).

One way of understanding a BamViews instance is as a rectangular data
structure. The columns represent BAM files (e.g., distinct samples). The rows
represent ranges (i.e., genomic coordinates). For instance, a ChIP-seq experi-
ment might identify a number of peaks of high read counts.

5

3.1 Assembling a BamViews instance

To illustrate, suppose we have an interest in caffeine metabolism in humans. The
‘rows’ contain coordinates of genomic regions associated with genes in a KEGG
caffeine metabolism pathway. The ‘columns’ represent individuals in the 1000
genomes project. The details of creating a BamViews object are described in
the appendix. Here we retrieve archived versions of the genomic ranges we are
interested in (bamRanges) and a vector of BAM file URLs (slxMaq09).

> library(GenomicFeatures)

> bamRanges <- local({

+ fl <- system.file("extdata", "CaffeineTxdb.sqlite",

+ package="Rsamtools")

+ transcripts(loadDb(fl))

+ })

> slxMaq09 <- local({

+ fl <- system.file("extdata", "slxMaq09_urls.txt",

+ package="Rsamtools")

+ readLines(fl)

+ })

We now assemble the BamViews instance from these objects; we also provide
information to annotated the BAM files (with the bamSamples function argument,
which is a DataFrame instance with each row corresponding to a BAM file) and
the instance as a whole (with bamExperiment, a simple named list containing
information structured as the user sees fit).

> bamExperiment <-

+ list(description="Caffeine metabolism views on 1000 genomes samples",

+ created=date())

> bv <- BamViews(slxMaq09, bamRanges=bamRanges,

+ bamExperiment=bamExperiment)

> metadata(bamSamples(bv)) <-

+ list(description="Solexa/MAQ samples, August 2009",

+ created="Thu Mar 25 14:08:42 2010")

3.2 Using BamViews instances

The BamViews object can be queried for its component parts, e.g.,

> bamExperiment(bv)

$description

[1] "Caffeine metabolism views on 1000 genomes samples"

$created

[1] "Fri Nov 9 21:04:29 2012"

6

More usefully, Methods in Rsamtools are designed to work with BamViews
objects, retrieving data from all files in the view. These operations can take
substantial time and require reliable network access.

To illustrate, the following code (not evaluated when this vignette was cre-
ated) downloads the index files associated with the bv object

> bamIndexDir <- tempfile()

> indexFiles <- paste(bamPaths(bv), "bai", sep=".")

> dir.create(bamIndexDir)

> idxFiles <- mapply(download.file, indexFiles,

+ file.path(bamIndexDir, basename(indexFiles)) ,

+ MoreArgs=list(method="curl"))

and then queries the 1000 genomes project for reads overlapping our transcripts;
by loading the multicore package, we tell Rsamtools to use as many cores as are
available on our machine (the multicore package is not currently – as of 25
March, 2010 – reliable on Windows computers)

> library(multicore)

> olaps <- readBamGappedAlignments(bv)

The resulting object is about 6 MB in size. To avoid having to download this
data each time the vignette is run, we instead load it from disk

> load(system.file("extdata", "olaps.Rda", package="Rsamtools"))

> olaps

SimpleList of length 24

names(24): NA06986.SLX.maq.SRP000031.2009_08.bam ...

> head(olaps[[1]])

GappedAlignments with 6 alignments and 0 metadata columns:

seqnames strand cigar qwidth start

<Rle> <Rle> <character> <integer> <integer>

[1] 19 + 51M 51 41594322

[2] 19 - 51M 51 41594351

[3] 19 - 51M 51 41594370

[4] 19 + 51M 51 41594371

[5] 19 - 51M 51 41594402

[6] 19 + 51M 51 41594413

end width ngap

<integer> <integer> <integer>

[1] 41594372 51 0

[2] 41594401 51 0

[3] 41594420 51 0

[4] 41594421 51 0

[5] 41594452 51 0

7

[6] 41594463 51 0

seqlengths:

1 2 3 4 5 6 7 8 9 ... 17 18 19 20 21 22 X Y MT

NA NA NA NA NA NA NA NA NA ... NA NA NA NA NA NA NA NA NA

There are 12904 reads in NA06986.SLX.maq.SRP000031.2009_08.bam overlap-
ping at least one of our transcripts. It is easy to explore this object, for instance
discovering the range of read widths in each individual.

> head(t(sapply(olaps, function(elt) range(qwidth(elt)))))

[,1] [,2]

NA06986.SLX.maq.SRP000031.2009_08.bam 51 51

NA06994.SLX.maq.SRP000031.2009_08.bam 36 51

NA07051.SLX.maq.SRP000031.2009_08.bam 51 51

NA07346.SLX.maq.SRP000031.2009_08.bam 48 76

NA07347.SLX.maq.SRP000031.2009_08.bam 51 51

NA10847.SLX.maq.SRP000031.2009_08.bam 36 51

Suppose we were particularly interested in the first transcript, which has a
transcript id ENST00000343932. Here we extract reads overlapping this tran-
script from each of our samples. As a consequence of the protocol used, reads
aligning to either strand could be derived from this transcript. For this reason,
we set the strand of our range of interest to *. We use the endoapply func-
tion, which is like lapply but returns an object of the same class (in this case,
SimpleList) as its first argument.

> rng <- bamRanges(bv)[1]

> strand(rng) <- "*"

> olap1 <- endoapply(olaps, subsetByOverlaps, rng)

> olap1

SimpleList of length 24

names(24): NA06986.SLX.maq.SRP000031.2009_08.bam ...

> head(olap1[[24]])

GappedAlignments with 6 alignments and 0 metadata columns:

seqnames strand cigar qwidth start

<Rle> <Rle> <character> <integer> <integer>

[1] 15 + 36M 36 75041174

[2] 15 - 36M 36 75041180

[3] 15 + 36M 36 75041186

[4] 15 - 36M 36 75041206

[5] 15 + 36M 36 75041208

[6] 15 + 36M 36 75041211

end width ngap

8

<integer> <integer> <integer>

[1] 75041209 36 0

[2] 75041215 36 0

[3] 75041221 36 0

[4] 75041241 36 0

[5] 75041243 36 0

[6] 75041246 36 0

seqlengths:

1 2 3 4 5 6 7 8 9 ... 17 18 19 20 21 22 X Y MT

NA NA NA NA NA NA NA NA NA ... NA NA NA NA NA NA NA NA NA

To carry the example a little further, we calculate coverage of each sample:

> minw <- min(sapply(olap1, function(elt) min(start(elt))))

> maxw <- max(sapply(olap1, function(elt) max(end(elt))))

> cvg <- endoapply(olap1, coverage,

+ shift=-start(ranges(bamRanges[1])),

+ width=width(ranges(bamRanges[1])))

> cvg

SimpleList of length 24

names(24): NA06986.SLX.maq.SRP000031.2009_08.bam ...

> cvg[[1]]

SimpleRleList of length 25

$`1`
integer-Rle of length 7758 with 1 run

Lengths: 7758

Values : 0

$`2`
integer-Rle of length 7758 with 1 run

Lengths: 7758

Values : 0

$`3`
integer-Rle of length 7758 with 1 run

Lengths: 7758

Values : 0

$`4`
integer-Rle of length 7758 with 1 run

Lengths: 7758

Values : 0

9

$`5`
integer-Rle of length 7758 with 1 run

Lengths: 7758

Values : 0

...

<20 more elements>

Since the example includes a single region of uniform width across all samples,
we can easily create a coverage matrix with rows representing nucleotide and
columns sample and, e.g., document variability between samples and nucleotides

> m <- matrix(unlist(lapply(cvg, lapply, as.vector)),

+ ncol=length(cvg))

> summary(rowSums(m))

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000 0.000 0.000 3.254 0.000 127.000

> summary(colSums(m))

Min. 1st Qu. Median Mean 3rd Qu. Max.

13220 15260 23400 26300 35590 56840

4 Directions

This vignette has summarized facilities in the Rsamtools package. Important
additional packages include GenomeRanges (for representing and manipulating
gapped alignments), ShortRead for I/O and quality assessment of ungapped
short read alignments, Biostrings and BSgenome for DNA sequence and whole-
genome manipulation, IRanges for range-based manipulation, and rtracklayer
for I/O related to the UCSC genome browser. Users might also find the interface
to the integrative genome browser (IGV) in SRAdb useful for visualizing BAM

files.

> packageDescription("Rsamtools")

Package: Rsamtools

Type: Package

Title: Binary alignment (BAM), variant call (BCF), or

tabix file import

Version: 1.10.2

Author: Martin Morgan, Herv\'e Pag\`es
Maintainer: Bioconductor Package Maintainer

<maintainer@bioconductor.org>

Description: This package provides an interface to

the 'samtools', 'bcftools', and 'tabix'

10

utilities (see 'LICENCE') for manipulating SAM

(Sequence Alignment / Map), binary variant call

(BCF) and compressed indexed tab-delimited

(tabix) files.

URL:

http://bioconductor.org/packages/release/bioc/html/Rsamtools.html

License: Artistic-2.0 + file LICENSE

LazyLoad: yes

Depends: methods, IRanges (>= 1.15.35), GenomicRanges

(>= 1.9.48), Biostrings (>= 2.25.6)

Imports: methods, utils, IRanges, GenomicRanges,

Biostrings, zlibbioc, bitops, BiocGenerics (>=

0.1.3)

Suggests: ShortRead (>= 1.13.19), GenomicFeatures,

TxDb.Dmelanogaster.UCSC.dm3.ensGene, KEGG.db,

RUnit

LinkingTo: Biostrings, IRanges

biocViews: DataImport, Sequencing,

HighThroughputSequencing

Built: R 2.15.2; x86_64-unknown-linux-gnu; 2012-11-10

05:03:47 UTC; unix

-- File: /tmp/RtmpAH4fNL/Rinst4073672fe3de/Rsamtools/Meta/package.rds

> sessionInfo()

R version 2.15.2 (2012-10-26)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=C LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets

[6] methods base

other attached packages:

[1] GenomicFeatures_1.10.0 AnnotationDbi_1.20.2

[3] Biobase_2.18.0 Rsamtools_1.10.2

[5] Biostrings_2.26.2 GenomicRanges_1.10.5

[7] IRanges_1.16.4 BiocGenerics_0.4.0

11

loaded via a namespace (and not attached):

[1] BSgenome_1.26.1 DBI_0.2-5

[3] RCurl_1.95-3 RSQLite_0.11.2

[5] XML_3.95-0.1 biomaRt_2.14.0

[7] bitops_1.0-4.2 parallel_2.15.2

[9] rtracklayer_1.18.0 stats4_2.15.2

[11] tools_2.15.2 zlibbioc_1.4.0

A Assembling a BamViews instance

A.1 Genomic ranges of interest

We identify possible genes that KEGG associates with caffeine metabolism:

> library(KEGG.db)

> kid <- revmap(KEGGPATHID2NAME)[["Caffeine metabolism"]]

> egid <- KEGGPATHID2EXTID[[sprintf("hsa%s", kid)]]

Then we use the biomaRt package to translate Entrez identifiers to Ensembl
transcript ids, and use these to create a small data base (using the GenomicFea-
tures packages) of features we are interested in

> library(biomaRt)

> mart <- useMart("ensembl", "hsapiens_gene_ensembl")

> ensid <- getBM(c("ensembl_transcript_id"), filters="entrezgene",

+ values=egid, mart=mart)[[1]]

> library(GenomicFeatures)

> txdb <- makeTranscriptDbFromBiomart(transcript_ids=ensid)

Transcript genomic locations are contained in txdb; we will use those as the
ranges for the BamViews

> bamRanges <- transcripts(txdb)

A.2 BAM files

Note: The following operations were performed at the time the vignette was
written; location of on-line resources, in particular the organization of the 1000
genomes BAM files, may have changed.

We are interested in collecting the URLs of a number of BAM files from the
1000 genomes project. Our first goal is to identify files that might make for an
interesting comparison. First, let’s visit the 1000 genomes FTP site and discover
available files. We’ll use the RCurl package to retrieve the names of all files in
an appropriate directory

> library(RCurl)

> ftpBase <-

12

+ "ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/pilot_data/data/"

> indivDirs <-

+ strsplit(getURL(ftpBase, ftplistonly=TRUE), "\n")[[1]]

> alnDirs <-

+ paste(ftpBase, indivDirs, "/alignment/", sep="")

> urls0 <-

+ strsplit(getURL(alnDirs, dirlistonly=TRUE), "\n")

From these, we exclude directories without any files in them, select only the
BAM index (extension .bai) files, and choose those files that exactly six ’.’

characters in their name.

> urls <- urls[sapply(urls0, length) != 0]

> fls0 <- unlist(unname(urls0))

> fls1 <- fls0[grepl("bai$", fls0)]

> fls <- fls1[sapply(strsplit(fls1, "\\."), length)==7]

After a little exploration, we focus on those files obtained form Solexa sequenc-
ing, aligned using MAQ, and archived in August, 2009; we remove the .bai ex-
tension, so that the URL refers to the underlying file rather than index. There
are 24 files.

> urls1 <-

+ Filter(function(x) length(x) != 0,

+ lapply(urls,

+ function(x) x[grepl("SLX.maq.*2009_08.*bai$", x)]))

> slxMaq09.bai <-

+ mapply(paste, names(urls1), urls1, sep="", USE.NAMES=FALSE)

> slxMaq09 <- sub(".bai$", "", slxMaq09.bai) #$

As a final step to prepare for using a BamViews file, we create local copies
of the index files. The index files are relatively small (about 190 Mb total).

> bamIndexDir <- tempfile()

> dir.create(bamIndexDir)

> idxFiles <- mapply(download.file, slxMaq09.bai,

+ file.path(bamIndexDir, basename(slxMaq09.bai)) ,

+ MoreArgs=list(method="curl"))

13

	Introduction
	Input
	Large bam files

	Views
	Assembling a BamViews instance
	Using BamViews instances

	Directions
	Assembling a BamViews instance
	Genomic ranges of interest
	BAM files

