
Adding R functions to Galaxy

Dan Tenenbaum

October 1, 2012

Contents

1 Introduction 1

2 Best Practices For Writing ’Galaxifiable’ Functions 1

3 Exposing a package in Galaxy 2

4 Function Dependencies 3

5 Installing and Starting Galaxy 3

6 Adding a function to Galaxy 3

7 About This Example 3

8 Did it work? 3

9 Sharing Your Galaxy Tool 5

10 A More Useful Example 5

1 Introduction

Galaxy (http://galaxy.psu.edu/) is an open, web-based platform for data intensive biomedical research.
It provides an easy-to-use web interface and can expose bioinformatics workflows written in any programming
language.

Normally, in order to expose new functionality (a tool in Galaxy parlance) in a Galaxy instance, you have
to manually create an XML file with information about the function, and modify an additional XML file.

The RGalaxy package automates this process, pulling most of the necessary information from the function
itself and its manual page (you provide the remaining information as arguments to the galaxy function).

2 Best Practices For Writing ’Galaxifiable’ Functions

A function that you wish to expose in Galaxy has certain limitations.

• The function’s arguments must include the names of its input and output files (function return values
are ignored).

• Any error conditions should be handled with stop with a useful/informative error message. The Galaxy
user will see these messages if an error occurs.

1



• Functions which take datasets as input should accept as arguments the filenames pointing to those
datasets. The Galaxy user interface will allow the user to choose the dataset graphically.

• Return values of functions are ignored. Function output should be written to one or more files, and
the names of these files should be passed into the function as arguments.

• Functions should be documented with a manual page. galaxy will use this manual page to fill in
relevant sections of the Galaxy XML file. The following sections of the man page are required:

– alias

– title

– description

– arguments - each argument must be documented

– details

The following example illustrates these best practices (this function is in the RGalaxy package under the
name functionToGalaxify:

function (inputfile1 = GalaxyInputFile(), inputfile2 = GalaxyInputFile(),

plotTitle = character(), plotSubTitle = "My subtitle", outputfile1 = GalaxyOutput("mydata",

"csv"), outputfile2 = GalaxyOutput("myplot", "pdf"))

{

data1 <- tryCatch({

as.matrix(read.delim(inputfile1, row.names = 1))

}, error = function(err) {

stop("failed to read first data file: ", conditionMessage(err))

})

data2 <- tryCatch({

as.matrix(read.delim(inputfile2, row.names = 1))

}, error = function(err) {

stop("failed to read second data file: ", conditionMessage(err))

})

data3 <- data1 + data2

write.csv(data3, file = outputfile1)

pdf(outputfile2)

if (missing(plotTitle))

plotTitle <- ""

plot(data3, main = plotTitle, sub = plotSubTitle)

dev.off()

}

<environment: namespace:RGalaxy>

This is a trivial function that reads in two matrices from tab-delimited text files, adds them, writes the
result to a text file and plots it to a PDF file.

3 Exposing a package in Galaxy

Because of the constraints above, most existing R functions will not immediately work in Galaxy; you’ll need
to write a simple wrapper function to expose the functionality. If your wrapper function is part of a package
(and you want the functions in that package to be available to your wrapper), set the package parameter
in your call to galaxy to be the name of the package. If your wrapper is exported (in your NAMESPACE),
set the exported parameter to TRUE, otherwise set it to FALSE.

2



4 Function Dependencies

You are responsible for making sure that the machine where Galaxy is running (which may be different from
the machine where you run RGalaxy) has all the appropriate dependcies installed. This includes R packages
as well as any external programs. While RGalaxy itself is not required on this machine, its dependency
optparse is required so that the wrapper R script generated by RGalaxy can properly parse its command-
line arguments.

5 Installing and Starting Galaxy

Refer to the page http://wiki.g2.bx.psu.edu/Admin/Get%20Galaxy.
Follow the steps for installing and starting Galaxy. In a nutshell:

hg clone https://bitbucket.org/galaxy/galaxy-dist/

cd galaxy-dist

./run.sh --reload

Heed the tip about starting Galaxy with the ”–reload” option so that it can be easily stopped (with
control-C) and restarted.

6 Adding a function to Galaxy

Now that you have written a function that follows the best practices described above, you can make it
available to Galaxy as follows:

> galaxy(functionToGalaxify,

+ manpage="functionToGalaxify",

+ version="0.99.0",

+ name="Add",

+ package="RGalaxy",

+ galaxyConfig=GalaxyConfig(getwd(), "mytool", "Test Section",

+ "testSectionId")

+ )

7 About This Example

Most of the information Galaxy needs is in the function and its manual page; here we point to those two
items, and tell RGalaxy where Galaxy is installed. We also include version information and describe how
the resulting tool in Galaxy can be found.

8 Did it work?

Let’s check whether it worked. If Galaxy is running, interrupt it with control-C. (with the default local
installation, Galaxy will not automatically detect when a new tool has been added; it must be restarted).
Restart Galaxy like so:

./run.sh --reload

You can then go to Galaxy in your web browser at the URL http://localhost:8080.
First you need to upload some sample data sets to Galaxy.
In R, you can obtain the path to the data sets as follows:

3



> system.file("extdata", "a.tsv", package="RGalaxy")

> system.file("extdata", "b.tsv", package="RGalaxy")

You can then upload these data sets to Galaxy by clicking Get Data, then Upload File. You only need
to do this once for each Galaxy installation.

The section we added above, called ”Test Section”, is visible (note that many tools have been removed
from this Galaxy installation for clarity).

If we click on ”Test Section”, then we see the tool that has been created:

Most of this information came from our function and its man page.
If your function or its man page changes, just run galaxy again. You will need to restart Galaxy to see

the changes.

4



9 Sharing Your Galaxy Tool

To share your Galaxy tool with a wider audience, you need to move it to a production instance of Galaxy. The
files you’ll need to move are GALAXY HOME/tool conf.xml (or maybe just the section that was created by
galaxy), and the directory with your tool files (in our example, that was GALAXY HOME/tools/mytool).

10 A More Useful Example

Suppose you have some Affymetrix probe IDs and you want to look up the PFAM and SYMBOL names for
them. It’s quite easy to write a function to expose this in Galaxy:

> probeLookup <- function(probe_ids=character(),

+ outputfile=GalaxyOutput("probeLookup", "csv"))

+ {

+ ## probe_ids can be something like "1002_f_at 1003_s_at"

+ library(hgu95av2.db)

+ ids <- strsplit(probe_ids, " ")[[1]]

+ results <- select(hgu95av2.db, keys=ids, cols=c("SYMBOL","PFAM"),

+ keytype="PROBEID")

+ write.csv(results, file=outputfile)

+ }

Then, you can document the function with a man page:

> system.file("extdata", "probeLookup.Rd", package="RGalaxy")

...you can expose the function in Galaxy as follows:

> galaxy(probeLookup,

+ version="0.0.1",

+ manpage=system.file("extdata", "probeLookup.Rd", package="RGalaxy"),

+ galaxyConfig=GalaxyConfig(galaxyHome, "probeTool", "Test Section",

+ "testSectionId")

+ )

5


