Package 'ecoCopula'

December 4, 2025

Beechior 1, 2023
Title Graphical Modelling and Ordination using Copulas
Version 1.0.6
Description Creates 'graphs' of species associations (interactions) and ordination biplots from co-occurrence data by fitting discrete gaussian copula graphical models. Methods described in Popovic, GC., Hui, FKC., Warton, DI., (2018) <doi:10.1016 j.jmva.2017.12.002="">.</doi:10.1016>
Depends R (>= 3.5.0), mvabund (>= 4.2)
Imports glasso, plyr, sna, MASS, tweedie, igraph, betareg, doParallel, mgcv, glm2, ordinal, compiler, foreach, stats
License LGPL (>= 2.1)
Encoding UTF-8
LazyData true
RoxygenNote 7.3.2
Suggests knitr, rmarkdown, tidyr, ggplot2, RColorBrewer, ggraph, labdsv, tidygraph, grDevices
VignetteBuilder knitr
Config/testthat/edition 3
<pre>URL https://eco-stats.github.io/ecoCopula/</pre>
NeedsCompilation no
Author Gordana Popovic [aut], David Warton [ctb, cre], Francis K.C. Hui [ctb], Michelle Lim [ctb]
Maintainer David Warton <david.warton@unsw.edu.au></david.warton@unsw.edu.au>
Repository CRAN
Date/Publication 2025-12-04 09:00:09 UTC
Contents
cgr

2 cgr

fitted.stackedsdm								 									5
plot.cgr								 									6
plot.cord								 									7
plot.stackedsdm								 									9
predict.stackedsdm .								 									9
print.cgr								 									11
print.cord								 									11
residuals. stackeds dm								 									12
simulate.cord																	
spider								 									14
stackedsdm								 									16
summary.cgr																	
summary.cord								 									18
																	19
																	19

cgr

Index

Fitting Gaussian copula graphical lasso to co-occurrence data

Description

cgr is used to fit a Gaussian copula graphical model to multivariate discrete data, like species cooccurrence data in ecology. This function fits the model and estimates the shrinkage parameter using BIC. Use plot.cgr to plot the resulting graph.

Usage

```
cgr(
  obj,
  lambda = NULL,
  n.lambda = 100,
  n.samp = 500,
  method = "BIC",
  seed = NULL
)
```

Arguments

obj	object of either class manyglm, or manyany with ordinal models clm
lambda	vector, values of shrinkage parameter lambda for model selection (optional, see detail)
n.lambda	integer, number of lambda values for model selection (default = 100), ignored if lambda supplied
n.samp	integer (default = 500), number of sets residuals used for importance sampling (optional, see detail)
method	method for selecting shrinkage parameter lambda, either "BIC" (default) or "AIC"
seed	integer (default = 1), seed for random number generation (optional, see detail)

cord 3

Value

Three objects are returned; best_graph is a list with parameters for the 'best' graphical model, chosen by the chosen method; all_graphs is a list with likelihood, BIC and AIC for all models along lambda path; obj is the input object.

Details

cgr is used to fit a Gaussian copula graphical model to multivariate discrete data, such as cooccurrence (multi species) data in ecology. The model is estimated using importance sampling with
n.samp sets of randomised quantile or "Dunn-Smyth" residuals (Dunn & Smyth 1996), and the
glasso function for fitting Gaussian graphical models. Models are fit for a path of values of the
shrinkage parameter lambda chosen so that both completely dense and sparse models are fit. The
lambda value for the best_graph is chosen by BIC (default) or AIC. The seed is controlled so that
models with the same data and different predictors can be compared.

Author(s)

Gordana Popovic <g.popovic@unsw.edu.au>.

References

Dunn, P.K., & Smyth, G.K. (1996). Randomized quantile residuals. Journal of Computational and Graphical Statistics 5, 236-244.

Popovic, G. C., Hui, F. K., & Warton, D. I. (2018). A general algorithm for covariance modeling of discrete data. Journal of Multivariate Analysis, 165, 86-100.

See also

```
plot.cgr
```

Examples

```
abund <- spider$abund[,1:5]
spider_mod <- stackedsdm(abund,~1, data = spider$x, ncores=2)
spid_graph=cgr(spider_mod)
plot(spid_graph,pad=1)</pre>
```

cord

Model based ordination with Gaussian copulas

Description

Model based ordination with Gaussian copulas

```
cord(obj, nlv = 2, n.samp = 500, seed = NULL)
```

4 cord

Arguments

obj	object of either class manyglm, or manyany with ordinal models clm
nlv	number of latent variables (default = 2, for plotting on a scatterplot)
n.samp	integer (default = 500), number of sets residuals used for importance sampling (optional, see detail)
seed	integer (default = NULL), seed for random number generation (optional)

Value

loadings latent factor loadings scores latent factor scores sigma covariance matrix estimated with nlv latent variables theta precision matrix estimated with nlv latent variables BIC BIC of estimated model logL log-likelihood of estimated model

Details

cord is used to fit a Gaussian copula factor analytic model to multivariate discrete data, such as co-occurrence (multi species) data in ecology. The model is estimated using importance sampling with n.samp sets of randomised quantile or "Dunn-Smyth" residuals (Dunn & Smyth 1996), and the factanal function. The seed is controlled so that models with the same data and different predictors can be compared.

Author(s)

Gordana Popovic <g.popovic@unsw.edu.au>.

References

Dunn, P.K., & Smyth, G.K. (1996). Randomized quantile residuals. Journal of Computational and Graphical Statistics 5, 236-244.

Popovic, G. C., Hui, F. K., & Warton, D. I. (2018). A general algorithm for covariance modeling of discrete data. Journal of Multivariate Analysis, 165, 86-100.

See also

```
plot.cord
```

```
abund <- spider$abund
spider_mod <- stackedsdm(abund,~1, data = spider$x, ncores=2)
spid_lv=cord(spider_mod)
plot(spid_lv,biplot = TRUE)</pre>
```

fitted.stackedsdm 5

fitted.stackedsdm

Fitted values from a stackedsdm object

Description

Fitted values from a stackedsdm object

Usage

```
## S3 method for class 'stackedsdm'
fitted(object, ...)
```

Arguments

object An object of class stackedsdm
... Not used

Value

A matrix of fitted values.

Details

Extracts the fitted values from stackedsdm object.

Author(s)

Francis K.C. Hui <francis.hui@anu.edu.au>.

```
library(mvabund)
data(spider)
X <- spider$x
abund <- spider$abund
# Example 1: Simple example
myfamily <- "negative.binomial"</pre>
# Example 1: Funkier example where Species are assumed to have different distributions
# Fit models including all covariates are linear terms, but exclude for bare sand
fit0 <- stackedsdm(abund, formula_X = ~. -bare.sand, data = X, family = myfamily, ncores=2)</pre>
fitted(fit0)
# Example 2: Funkier example where Species are assumed to have different distributions
abund[,1:3] \leftarrow (abund[,1:3]>0)*1 # First three columns for presence absence
myfamily <- c(rep(c("binomial"), 3),</pre>
              rep(c("negative.binomial"), (ncol(abund)-3)))
fit0 <- stackedsdm(abund, formula_X = ~ bare.sand, data = X, family = myfamily, ncores=2)
fitted(fit0)
```

6 plot.cgr

plot.cgr

Plot graph of direct species associations.

Description

Plot graph of direct species associations.

Usage

```
## S3 method for class 'cgr'
plot(
    x,
    P = NULL,
    vary.edge.lwd = FALSE,
    edge.col = c("light blue", "pink"),
    label = colnames(x$obj$fitted),
    vertex.col = "blue",
    label.cex = 0.8,
    edge.lwd = ifelse(vary.edge.lwd, 10, 4),
    edge.lty = c(1, 1),
    ...
)
```

Arguments

x	is a cgr object, e.g. from output of cgr.
P	locations of graph nodes, if NULL (default) these are generated with a Fruchterman Reingold algorithm.
vary.edge.lwd	is logical, TRUE will vary line width according to the strength of partial correlation, default (FALSE) uses fixed line width.
edge.col	takes two colours as arguments - the first is the colour used for positive partial correlations, the second is the colour of negative partial correlations.
label	is a vector of labels to apply to each variable, defaulting to the column names supplied in the data.
vertex.col	the colour of graph nodes.
label.cex	is the size of labels.
edge.lwd	is line width, defaulting to $10*$ partial correlation when varying edge width, and 4 otherwise.
edge.lty	is a vector of two integers specifying the line types for positive and negative partial correlations, respectively. Both default to solid lines.
	other parameters to be passed through to plotting gplot, in particular pad, the amount to pad the plotting range is useful if labels are being clipped. For details see the gplot help file.

plot.cord 7

Value

a plot of species associations after accounting for the effect of all other species, positive/negative are blue/pink. The matrix of node positions (P) is returned silently.

See Also

```
gplot, cgr
```

Examples

```
abund <- spider$abund[,1:5]</pre>
spider_mod <- stackedsdm(abund,~1, data = spider$x, ncores=2)</pre>
spid_graph=cgr(spider_mod)
plot(spid_graph, edge.col=c("forestgreen","darkorchid4"),
                 vertex.col = "black",vary.edge.lwd=TRUE)
library(tidyr)
library(tidygraph)
library(ggraph)
igraph_out<-spid_graph$best_graph$igraph_out</pre>
igraph_out %>% ggraph('fr') + # see ?layout_tbl_graph_igraph
  geom_edge_fan0(aes( colour = partcor, width=partcor)) +
  scale_edge_width(range = c(0.5, 3)) +
   scale_edge_color_gradient2(low="#b2182b",mid="white",high="#2166ac")+
  geom_node_text(aes(label=name), repel = TRUE)+
  geom_node_point(aes(size=1.3))+
   theme_void() +
   theme(legend.position = 'none')
```

plot.cord

Plots an ordination of latent variables and their corresponding coefficients (biplot).

Description

Plots an ordination of latent variables and their corresponding coefficients (biplot).

```
## S3 method for class 'cord'
plot(
    x,
    biplot = FALSE,
    site.col = "black",
```

8 plot.cord

```
sp.col = "blue",
alpha = 0.7,
arrow = TRUE,
site.text = FALSE,
labels = dimnames(x$obj$fitted),
...
)
```

Arguments

X	is a cord object, e.g. from output of cord
biplot	TRUE if both latent variables and their coefficients are plotted, FALSE if only latent variables
site.col	site number colour (default is black), vector of length equal to the number of sites
sp.col	species name colour (default is blue), vector of length equal to the number of sites (if arrow=TRUE)
alpha	scaling factor for ratio of scores to loadings (default is 0.7)
arrow	should arrows be plotted for species loadings (default is TRUE)
site.text	should sites be labeled by row names of data (default is FALSE, points are drawn)
labels	the labels for sites and species (for biplots only) (default is data labels)
	other parameters to be passed through to plotting functions.

Value

an ordination plot.

```
X <- spider$x
abund <- spider$abund
spider_mod <- stackedsdm(abund,~1, data = X, ncores=2)
spid_lv=cord(spider_mod)
#colour sites according to second column of x (bare sand)
cols=ifelse(spider$x[,2]>0,"black","red")
plot(spid_lv,biplot = FALSE,site.col=cols, site.text = TRUE)

library(ggplot2)
library(RColorBrewer)
alpha= 2.5
site_res <- data.frame(spid_lv$scores,X)
sp_res <- data.frame(spid_lv$loadings,species=colnames(abund))
ggplot()+
geom_point(aes(x=Factor1,y=Factor2,color = reflection ),site_res)+
geom_text(aes(x = Factor1*alpha, y = Factor2*alpha,label = species),data=sp_res)+
scale_color_gradientn(colours = brewer.pal(n = 10, name = "PuOr"))+</pre>
```

plot.stackedsdm 9

```
theme_classic()
```

plot.stackedsdm

Plot residuals of stackedsdm.

Description

Plot residuals of stackedsdm.

Usage

```
## S3 method for class 'stackedsdm' plot(x, ...)
```

Arguments

```
x is a stackedsdm object.... not used
```

Examples

```
abund <- spider$abund
spider_mod <- stackedsdm(abund,~1, data = spider$x)
plot(spider_mod)</pre>
```

predict.stackedsdm

Predictions from a stackedsdm object

Description

Predictions from a stackedsdm object

```
## S3 method for class 'stackedsdm'
predict(
   object,
   newdata = NULL,
   type = "link",
   se.fit = FALSE,
   na.action = na.pass,
   ...
)
```

10 predict.stackedsdm

Arguments

object An object of class stackedsdm

newdata Optionally, a data frame in which to look for variables with which to predict. If

omitted, the covariates from the existing dataset are used.

type The type of prediction required. This can be supplied as either a single character

string, when is applied to all species, or a vector of character strings of the same length as ncol(object\$y) specifying the type of predictions desired for each species. The exact type of prediction allowed depends precisely on the distribution, but for many there is at least "link" which is on the scale of the linear predictors, and "response" which is on the scale of the response variable.

The values of this argument can be abbreviated.

se.fit Logical switch indicating if standard errors are required.

na.action Function determining what should be done with missing values in newdata. The

default is to predict NA..

... not used

Value

A list where the k-th element is the result of applying the predict method to the k-th fitted model in object\$fits.

Details

This function simply applies a for loop, cycling through each fitted model from the stackedsdm object and then attempting to construct the relevant predictions by applying the relevant predict method. Please keep in mind no formatting is done to the predictions.

Author(s)

Francis K.C. Hui <francis.hui@anu.edu.au>.

print.cgr 11

```
fit0 <- stackedsdm(abund, formula_X = \sim bare.sand, data = X, family = myfamily, ncores=2) predict(fit0, type = "response")
```

print.cgr

Print function for cgr object

Description

Print function for cgr object

Usage

```
## S3 method for class 'cgr'
print(x, ...)
```

Arguments

```
x is a cgr object, e.g. from output of cgr.
... not used
```

See Also

cgr

Examples

```
abund <- spider$abund[,1:5]
spider_mod <- stackedsdm(abund,~1, data = spider$x, ncores=2)
spid_graph=cgr(spider_mod)
print(spid_graph)</pre>
```

print.cord

Print function for cord object

Description

Print function for cord object

```
## S3 method for class 'cord'
print(x, ...)
```

12 residuals.stackedsdm

Arguments

```
x is a cord object, e.g. from output of cord.
... not used
```

See Also

cord

Examples

```
abund <- spider$abund
spider_mod <- stackedsdm(abund,~1, data = spider$x, ncores=2)
spid_lv=cord(spider_mod)
print(spid_lv)</pre>
```

residuals.stackedsdm Calculate residuals from a stackedsdm object

Description

Calculate residuals from a stackedsdm object

Usage

```
## S3 method for class 'stackedsdm'
residuals(object, type = "dunnsmyth", seed = NULL, ...)
```

Arguments

object An object of class stackedsdm;

type Determined what type of residuals to calculate. The current options include

Dunn-Smyth residuals (default; "dunnsmyth"), raw response residuals ("response")

or probability integral transform residuals ("PIT");

seed For Dunn-Smyth and PIT residuals applied to discrete responses, random jitter-

ing is added, and the seed can be used to seed to jittering.

... not used

Value

A matrix of residuals

Details

Calculated the residuals from stackedsdm object.

simulate.cord 13

Author(s)

Francis K.C. Hui <francis.hui@anu.edu.au>.

Examples

simulate.cord

Simulates new data from a given cord object

Description

Simulates new data from a given cord object

Usage

```
## S3 method for class 'cord'
simulate(object, nsim = 1, seed = NULL, newdata = object$obj$data, ...)
```

Arguments

object	is a cord object, e.g. from output of cord
nsim	Number of simulations, defaults to 1. If $nsim > 1$, the simulated data will be appended.
seed	Random number seed, defaults to a random seed number.
newdata	A data frame in which to look for X covariates with which to simulate.
	not used Defaults to the X covariates in the fitted model.

14 spider

Examples

```
abund = spider$abund
spider_mod_ssdm = stackedsdm(abund,~1, data = spider$x, ncores=2)
spid_lv_ssdm = cord(spider_mod_ssdm)
simulate(spid_lv_ssdm, nsim=2)
# using mvabund
library(mvabund) #for manyglm
abund=mvabund(abund)
spider_mod = manyglm(abund~1)
spid_lv = cord(spider_mod)
simulate(spid_lv)
spider_mod_X = manyglm(abund ~ soil.dry + bare.sand, data=spider$x)
spid_lv_X = cord(spider_mod_X)
Xnew = spider x[1:10,]
simulate(spid_lv_X, newdata = Xnew)
simulate(spid_lv_X, nsim=2, newdata = Xnew)
spider_mod_X_ssdm = stackedsdm(abund, formula_X = ~. -bare.sand, data = spider$x, ncores=2)
spid_lv_X_ssdm = cord(spider_mod_X_ssdm)
simulate(spid_lv_X_ssdm, newdata = Xnew)
```

spider

Spider data

Description

Abundance of hunting spiders and associated environmental variables

Usage

spider

Format

A list containing the elements

abund A matrix with 28 observations of abundance of 12 hunting spider species.

x A data frame of six (transformed) environmental variables at each of the 28 sites.

trait A data frame of three species trait variables for each of the 12 species.

spider 15

Details

The matrix abund has the following species abundances (column name abbreviation in brackets)

- Alopecosa accentuata (Alopacce)
- Alopecosa cuneata (Alopcune)
- Alopecosa fabrilis (Alopfabr)
- Arctosa lutetiana (Arctlute)
- Arctosa perita(Arctperi)
- Aulonia albimana (Auloalbi)
- Pardosa lugubris (Pardlugu)
- Pardosa monticola (Pardmont)
- Pardosa nigriceps (Pardnigr)
- Pardosa pullata (Pardpull)
- Trochosa terricola (Trocterr)
- Zora spinimana (Zoraspin)

The data frame x has the following log(x+1)-transformed environmental variables

- · soil.dry Soil dry mass
- bare.sand Cover bare sand
- fallen.leaves Cover fallen leaves / twigs
- moss Cover moss
- herb.layer Cover herb layer
- reflection Reflection of the soil surface with a cloudless sky

The data frame trait has the following variables

- length (numeric) Length (log-transformed), averaged across typical lengths (in centimetres) for male and females
- (factor) Predominant colour, "yellow" or "dark"
- (factor) Whether the spider typically has markings on it: "none", "spots" or "stripes"

Source

Data attributed to van der Aart & Smeenk-Enserink (1975), obtained from the spider2 directory, CANOCO FORTRAN package, with trait data added by David Warton, exported from mvabund R package.

16 stackedsdm

stackedsdm

Stacked species regression models, possibly fitted in parallel

Description

Stacked species regression models, possibly fitted in parallel

Usage

```
stackedsdm(
   y,
   formula_X = ~1,
   data = NULL,
   family = "negative.binomial",
   trial_size = 1,
   do_parallel = FALSE,
   ncores = NULL,
   trace = FALSE
)
```

Arguments

y A matrix of species responses

formula_X An object of class formula representing the relationship to the covariates to be

fitted. There should be nothing to the left hand side of the "~" sign.

data Data frame of the covariates

family Either a single character vector, in which case all responses are assumed to

be from this family, or a vector of character strings of the same length as the number of columns of y. Families as strings and not actual family class objects. This could be changed though if desired in the future e.g., for custom link functions. Currently, the following families are supported (hopefully properly!): "gaussian", "negative.binomial" (with quadratic mean-variance relationship), "poisson", "binomial" (with logit link), "tweedie", "Gamma" (with log link), "exponential", "beta" (with logit link), "ordinal" (cumulative logit model),

"ztpoisson", "ztnegative.binomial", "zipoisson", "zinegative.binomial".

trial_size The trial size if any of the responses are binomial. Is either a single number or

a matrix with the same dimension as y. If the latter, then all columns that do not correspond to binomial responses are ignored.

do_parallel Do the separate species model fits in parallel? Defaults to TRUE

ncores The number of cores to use if separate the species model fits are done in parallel.

If do_parallel = TRUE, then it defaults to detectCores() - 2

trace Print information. This is not actually used currently

summary.cgr 17

Value

A object of class stackedsdm with the following components: call The function call; fits A list where the j-th element corresponds to the to the fitted model for species j i.e., the j-th column in y; linear_predictor A matrix of the fitted linear predictors fitted A matrix of the fitted values

Details

stackedsdm behaves somewhat like the manyglm or manyany function in the mvabund package, in the sense that it fits a separate regression to each species response i.e., column of y. The main difference is that different families can be permitted for each species, which thus allows for mixed responses types.

Author(s)

Francis K.C. Hui <francis.hui@anu.edu.au>.

Examples

summary.cgr

Summary function for cgr object

Description

Summary function for cgr object

```
## S3 method for class 'cgr'
summary(object, ...)
```

18 summary.cord

Arguments

```
object is a cgr object, e.g. from output of cgr. ... not used
```

See Also

cgr

Examples

```
abund <- spider$abund[,1:5]
spider_mod <- stackedsdm(abund,~1, data = spider$x, ncores=2)
spid_graph=cgr(spider_mod)
summary(spid_graph)</pre>
```

summary.cord

Summary function for cgr object

Description

Summary function for cgr object

Usage

```
## S3 method for class 'cord'
summary(object, ...)
```

Arguments

```
object is a cord object, e.g. from output of cgr.
... not used
```

See Also

cord

```
abund <- spider$abund[,1:5]
spider_mod <- stackedsdm(abund,~1, data = spider$x, ncores=2)
spid_lv=cord(spider_mod)
summary(spid_lv)</pre>
```

Index

```
\ast datasets
    spider, 14
cgr, 2, 6, 7, 11, 18
clm, 2, 4
cord, 3, 12, 18
factanal, 4
fitted.stackedsdm, 5
glasso, 3
gplot, 6, 7
manyany, 2, 4, 17
manyglm, 2, 4, 17
\mathsf{plot.cgr}, 2, 3, 6
plot.cord, 4, 7
{\tt plot.stackedsdm}, {\tt 9}
predict.stackedsdm, 9
print.cgr, 11
print.cord, 11
residuals.stackedsdm, 12
simulate.cord, 13
spider, 14
stackedsdm, 16
summary.cgr, 17
summary.cord, 18
```