bayesmsm: Fitting Bayesian Marginal Structural Models for Longitudinal Observational Data

Implements Bayesian marginal structural models for causal effect estimation with time-varying treatment and confounding. It includes an extension to handle informative right censoring. The Bayesian importance sampling weights are estimated using JAGS. See Saarela (2015) <doi:10.1111/biom.12269> for methodological details.

Version: 1.0.0
Depends: R (≥ 4.2.0)
Imports: coda (≥ 0.19-4), doParallel, foreach, ggplot2, graphics, grDevices, MCMCpack, parallel, R2jags, stats
Suggests: devtools, knitr, rmarkdown, testthat (≥ 3.0.0)
Published: 2025-06-17
DOI: 10.32614/CRAN.package.bayesmsm
Author: Kuan Liu ORCID iD [aut, cre, cph], Xiao Yan ORCID iD [aut], Martin Urner ORCID iD [aut]
Maintainer: Kuan Liu <kuan.liu at utoronto.ca>
BugReports: https://github.com/Kuan-Liu-Lab/bayesmsm/issues
License: MIT + file LICENSE
URL: https://github.com/Kuan-Liu-Lab/bayesmsm
NeedsCompilation: no
Materials: README NEWS
CRAN checks: bayesmsm results

Documentation:

Reference manual: bayesmsm.pdf
Vignettes: 'bayesmsm' for longitudinal data with informative right-censoring (source, R code)
'bayesmsm' for longitudinal data without right-censoring (source, R code)

Downloads:

Package source: bayesmsm_1.0.0.tar.gz
Windows binaries: r-devel: not available, r-release: not available, r-oldrel: not available
macOS binaries: r-release (arm64): bayesmsm_1.0.0.tgz, r-oldrel (arm64): bayesmsm_1.0.0.tgz, r-release (x86_64): not available, r-oldrel (x86_64): not available

Linking:

Please use the canonical form https://CRAN.R-project.org/package=bayesmsm to link to this page.